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Equational Automated 
Theorem Proving

• Want to solve the word problem 
automatically. 

• Does a finite set of identities (a theory) 
entail another identity?
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Example Theory: 
Groups

• For example, the theory of groups (G) is 
axiomatized by three identities: 
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x ∗ 1 ≈ x x ∗ x
−1

≈ 1 x ∗ (y ∗ z) ≈ (x ∗ y) ∗ z



Word Problem for 
Groups

• The word problem for G: is an identity a 
consequence of the axioms of group theory? 

• E.g., a left-inverse lemma:
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G |= x
−1 ∗ x

?

≈ 1



Proof about Groups

• Yes, there is a left inverse lemma! Here’s the 
proof: 
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x
−1

∗ x ≈ x
−1

∗ (x ∗ 1) (1)
≈ x

−1
∗ (x ∗ (x−1

∗ (x−1)−1)) (1)
≈ x

−1
∗ ((x ∗ x

−1) ∗ (x−1)−1) (3)
≈ x

−1
∗ (1 ∗ (x−1)−1) (2)

≈ (x−1
∗ 1) ∗ (x−1)−1 (3)

≈ x
−1

∗ (x−1)−1 (1)
≈ 1 (2)



Automating Group 
Theory Proofs

• That proof looked a little tricky. 

• Q) How long did it take me to find it?

• A) About 0.2s – I used an automated 
theorem prover! (Much longer with just 
my head.)
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Group Theory 
Completion

• Used a tool called Waldmeister that 
implements an algorithm called 
completion.

• Input: theory (finite set of identities). 

• Output: rewriting system (also called a 
completion) used to decide whether or 
not an identity holds. 
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Group Theory 
Completion

• Input: G

• Output: rewriting system equivalent to G.

• To prove an identity holds, rewrite both 
sides, then test for equality. 
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iterative, generating a sequence of intermediate rewriting systems which have the-

ories that are, roughly speaking, successively better better approximations of the

input theory E. The given reduction order is used to ensure that each intermediate

rewriting system is terminating and hence can safely (finitely) be used to calculate

normal forms during execution.

As an example, the theory of groups (G) is presented in Fig. 3-1. Group

theory is particularly well-suited to automated theorem proving procedures such as

completion because it is axiomatized by just a few identities. For ease of presenta-

tion, we use infix symbols such as ∗ as shorthand for a function symbols as described

above.

1 ∗ x ≈ x x−1 ∗ x ≈ 1 (x ∗ y) ∗ z ≈ x ∗ (y ∗ z)

Figure 3-1: The Theory of Groups (G)

One possible completion of G is shown in Fig. 3-2, a ten-rule term rewriting

system. It is easy to see that all the rewrite rules in the completion are compatible

with a lexicographic path order with precedence −−1 > ∗ > 1. Note however that

orders based on the size of the terms or the subterm order are not sufficient to prove

that the the system is terminating.

1 ∗ x → x x ∗ 1 → x 1−1 → 1

(x−1)−1 → x (x ∗ y)−1 → x−1 ∗ y−1 (x ∗ y) ∗ z → x ∗ (y ∗ z)

x ∗ x−1 → 1 x−1 ∗ x → 1

x ∗ (x−1 ∗ y) → y x−1 ∗ (x ∗ y) → y

Figure 3-2: A Convergent Completion of G

Leo Bachmair reformulated the original Knuth-Bendix completion procedure,

which was originally published as a deterministic algorithm, as a nondeterministic

equational inference system [2], and proved it correct (stated in Sect. 3.1). We

refer to this standard inference system as C because it will serves as the basis of a

correctness condition for a refinement of the procedure that will be developed later.

The rules of the inference system C are shown in Fig. 3-3. The notation s
.≈ t means

either s ≈ t or t ≈ s. The notation s
!→R v means that the term s is reduced with
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Group Theory Proofs 
Made Easy

• With a completion, it’s easy to solve the 
word problem.  Works every time. 
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(y ∗ x)−1
∗ (x ∗ y) → (y−1

∗ x
−1) ∗ (x ∗ y)

→ y
−1

∗ (x−1
∗ (x ∗ y))

→ y
−1

∗ y

→ 1

(y ∗ x) ∗ (x ∗ y)−1
→ (y ∗ x) ∗ (x−1

∗ y
1)

→ y ∗ (x ∗ (x−1
∗ y

−1))
→ y ∗ y

−1

→ 1



Another Completion

• Input: groups + one endomorphism (GE1). 

• Output: completion for GE1. Use this to 
solve the word problem for GE1. Easy! 
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Chapter 7

Results and Performance

Not outward, into the simple Mysteries of an open Sea, but inward, — branch-
ing, narrowing, compressing towards an Enigma as opaque and perilous as any
in my Travels.

Mason & Dixon

Slothrop is capable of completing a variety of theories fully automatically

in a modest amount of time. For example, the standard ten-rule completion of the

group axioms is discovered in under three seconds on a modern desktop PC. On

the way to this completion, it encounters 27 orientations, roughly half of which are

not trivially nonterminating and must be verified with AProVE. On the execution

branch that leads to a completion, however, only two orientation steps are required.

Slothrop automatically completes the theory of groups plus a single endomor-

phism (GE1, shown in Fig. 7-1) in under ten seconds, requiring about a hundred

calls to AProVE. The completion discovered is shown in Fig. 7-2.

1 ∗ x ≈ x (x ∗ y) ∗ z ≈ x ∗ (y ∗ z)

x−1 ∗ x ≈ 1 h(x ∗ y) ≈ h(x) ∗ h(y)

Figure 7-1: The Theory of One Group Endomorphism (GE1)

A large theory with 21 identities corresponding to propositional proof simpli-

fication rules [36] is considerably more difficult to complete because of the number

of orientations. Nonetheless, Slothrop does find a completion without user inter-

vention after about seven hours and three thousand calls to AProVE.
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x ∗ 1 → x x ∗ (y ∗ z) → (x ∗ y) ∗ z

1 ∗ x → x (x ∗ y)−1 → x−1 ∗ y−1

x ∗ x−1 → 1 (x ∗ y) ∗ y−1 → x

x−1 ∗ x → 1 (x ∗ y−1) ∗ y → x

1−1 → 1 h(x)−1 → h(x−1)

h(1) → 1 h(x) ∗ h(y) → h(x ∗ y)

(x−1)−1 → x (x ∗ h(y)) ∗ h(z) → x ∗ h(y ∗ z)

Figure 7-2: Convergent Completion of GE1

The majority of Slothrop’s running time is spent waiting for calls to AProVE.

Although we have encountered many examples of rewriting systems which AProVE

can show terminating after a prohibitively long amount of time, in practice we have

found that it is uncommon for such difficult systems to appear on the branch of a

successful execution. Most calls to AProVE that occur on successful branches re-

turn in under 2 seconds. Figure 7-3 shows the time for each call to AProVE while

completing GE1, in which most calls require fewer than 0.25 seconds and all fewer

than 0.5 seconds. Completeness of Slothrop can be exchanged for performance

enhancements by calling AProVE with a short timeout. The above completions

were obtained with a 5-second timeout.
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Completion Fails!

• Input: theory of groups + two commuting 
endomorphisms (CGE2). 

• Output: ... not a completion!

• Without a completion, we must use our 
heads to prove identities hold in CGE2.

11
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and termination of the resulting system verified by AProVE. This is a completely

new result and we consider it to be Slothrop’s defining achievement.

1 ∗ x ≈ x x−1 ∗ x ≈ 1 (x ∗ y) ∗ z ≈ x ∗ (y ∗ z)

f(x ∗ y) ≈ f(x) ∗ f(y) g(x ∗ y) ≈ g(x) ∗ g(y) f(x) ∗ g(y) ≈ g(y) ∗ f(x)

Figure 7-5: The Theory of Two Commuting Group Endomorphisms (CGE2)

(x ∗ y) ∗ z → x ∗ (y ∗ z) f(1) → 1

x−1 ∗ x → 1 (f(x))−1 → f(x−1)

x ∗ x−1 → 1 f(x) ∗ f(y) → f(x ∗ y)

x ∗ (x−1 ∗ y) → y f(x) ∗ (f(y) ∗ z) → f(x ∗ y) ∗ z

x−1 ∗ (x ∗ y) → y g(1) → 1

(x ∗ y)−1 → y−1 ∗ x−1 (g(x))−1 → g(x−1)

1 ∗ x → x g(x) ∗ g(y) → g(x ∗ y)

x ∗ 1 → x g(x) ∗ (g(y) ∗ z) → g(x ∗ y) ∗ z

1−1 → 1 f(x) ∗ g(y) → g(y) ∗ f(x)

(x−1)−1 → x f(x) ∗ (g(y) ∗ z) → g(y) ∗ (f(x) ∗ z)

Figure 7-6: Convergent Completion of CGE2

Using unfailing completion [3], Waldmeister is able to complete CGE2

as well, but constructs a larger system which is ground-confluent only — i.e, it

contains identities as well as rewrite rules. This system is often less helpful than

a small convergent completion, for example, in characterizing the normal forms of

the system for algebraic proof mining [36]. Furthermore, Waldmeister does not

appear to be able to find this ground-convergent completion fully automatically; a

carefully selected Knuth-Bendix order (given in [32]) must be provided. Slothrop

is able to find the convergent completion with no input from the user other than the

theory itself. (This still takes more than an hour, however, even using the heuristic

described in Chap. 6.)



Our Mission

• Revise the algorithm used by Waldmeister. 

• Use it to find a completion for CGE2. 

• Solve the word problem for CGE2 without 
using our heads. 
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But first...

• Waldmeister’s algorithm relies on results in 
the exciting field of term rewriting. 

• Today’s agenda:

• Cover important details about the word 
problem and term rewriting. 

• Describe completion (Waldmeister’s 
algorithm).  

• See why completion fails and then fix it. 

13



All About the Word 
Problem

• It’s undecidable (in general).

• Can decide the word problem for some 
theories, but not all. 
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u1 ≈ v1, u2 ≈ v2, . . . , un ≈ vn |= t1 ≈ tn



Word Problem Proofs
• How do we know an identity holds in a 

theory? Find a proof. 

• Proof is a sequence of terms: starting with 
one side of the identity and ending with the 
other side. 

• Successive terms created by replacing 
instances of one side of the theory axioms 
with instances of the other.  

• Easy to check, but hard to find. 
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Solving the Word 
Problem by Rewriting

• Idea: orient axioms – now called rules.

• Replace instances of lhs with instances of 
rhs – called rewriting.

• Rewrite terms to normal form.

• Two sides of identity have same normal form 
iff identity holds.
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Rewriting to Normal 
Form

17

• To solve the word problem like this, normal 
forms must:

• require finitely many reductions, 

• be unique – same end result regardless of 
reduction sequence.



Properties of Rewriting 
Systems

• Corresponds to the two most important 
properties of rewriting systems: 

• Termination: no infinitely long 
reduction sequences.

• Confluence: if a term is rewritten to 
distinct terms, then those terms can be 
rewritten to a common term (joined).

• Termination + confluence = convergence. 

18



Rewriting Example 1
• The non-confluent, terminating system

applied to term f(x,g(x)) yields any of 
these reduction sequences:

19

f(x, y) → x g(x) → x f(x, x) → h(x)

1. f(x, g(x)) → x
2. f(x, g(x)) → f(x, x) → h(x)



Rewriting Example 2
• The confluent, nonterminating system

20

applied to term f(x) yields this looping 
reduction sequence:

f(x) → g(h(x)) g(x) → f(x)

f(x) → g(h(x)) →
f(h(x)) → g(h(h(x))) →
f(h(h(x))) → g(h(h(h(x)))) →
f(h(h(h(x)))) → g(h(h(h(h(x))))) → · · ·



Rewriting Example 3
• The convergent system

ack(0, n) → n + 1
ack(m + 1, 0) → ack(m, 1)
ack(m + 1, n + 1) → ack(m, ack(m + 1, n))

applied to term ack(3,3) yields this long 
reduction sequence:

ack(3, 3) → ack(2, ack(3, 2)) → ack(2, (ack(2, (ack(3, 1))))) →
ack(2, (ack(2, (ack(2, ack(3, 0)))))) → ack(2, (ack(2, (ack(2, ack(2, 1)))))) →
ack(2, (ack(2, (ack(2, ack(1, ack(2, 0))))))) → · · · → 61

21



Proving Rewriting 
Properties

• To solve the word problem with rewriting, 
systems must be terminating and confluent. 

• How do we prove these properties?

• What if we can’t?

22



Proving Termination

• Prove a system is terminating with special 
well-founded ordering relation: a 
reduction order. 

• Theorem: a system is terminating iff a 
compatible reduction order exists. 

• An order > is compatible with a rewriting 
system if l > r for all rules l → r. 
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Proving Termination

• Termination is undecidable (reduction from 
halting problem), so finding a compatible 
ordering is tough. 

• Could also be impossible – e.g., any theory 
with the identity x + y ≈ y + x is not 
compatible with any reduction order. 
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Automated Termination 
Checkers

• Interesting aside: there are nifty tools to 
automatically prove termination. 

• Works for systems that are compatible with 
any one of a variety of reduction orders. 

• E.g., AProVE: fast, effective and produces 
human-readable proofs. 

• Could be useful later...?
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Proving Confluence

• Confluence is undecidable in general, 

• But decidable for rewriting systems that are 
terminating. 
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Deciding Confluence 
for Terminating Systems
• Try to rewrite a common instance of two 

rules’ lhs to different terms: t2← s1 → t1.  

• Try to join those terms to a common term: 
t1 → s2 ← t2. 

• (t1 ,t2) called a critical pair. 

• Theorem: joinability of all critical pairs 
implies confluence for terminating 
systems. 

27



Critical Pair Example 1

• Common instances of rules’ lhs rewrites 
two ways:

f(x, g(x)) → x g(g(x)) → x

g(x) ← f(g(x), g(g(x))) → f(g(x), x)

28



Non-Confluent Systems

• If system is not confluent, sometimes we can 
find an equivalent system that is. 

• Systems are equivalent if an identity holds in 
one system iff it holds in the other. 
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Creating Confluent 
Systems

• Start with a terminating system, compatible 
with reduction order >.

• Calculate a non-joinable critical pair (t1,t2)

• If t1 > t2, then add rule t1 → t2 to system. 

• Continue until all critical pairs are joinable.

30



Critical Pair Example 2

• Add unjoinable critical pair as rewrite rule. 
New, equivalent system:  

f(x, g(x)) → x g(g(x)) → x

g(x) ← f(g(x), g(g(x))) → f(g(x), x)

31

f(x, g(x)) → x g(g(x)) → x f(g(x), x) → g(x)



Completion

• Called completion, invented by Knuth.  

• Completion can solve the word 
problem. 

• Use the equivalent, covergent rewrite 
system (the completion) to normalize 
both sides of any identity. 

• If normal forms are the same, identity 
holds, otherwise it doesn’t.

32



Limits of Completion
• Completion doesn’t always work:

• An unorientable critical pair could be 
generated (completion fails);

• Critical pair generation might not  
terminate.

• Fails only if reduction order is incompatible 
with the new rule. 

• (Can show that “infinite” executions lead to 
semidecision procedure.)
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Completion Specified 
Formally

• Completion typically specified as an 
inference system. 

• Operates on tuples (E,R) – set of identities 
and rewrite system. 

• Start with (E0,∅) and finish with (∅,R∞). 

• E0 is the theory and R∞ is an equivalent 
convergent system (a completion). 

34



Completion as an 
Inference System

35
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a rule l →R r ∈ R such that l is not reducible by the rule s →R t. This technical

side-condition is a requirement for the proof of correctness, irrelevant to later proofs.

orient:

(E ∪ {s .≈ t}, R)

(E, R ∪ {s → t}) if s > t

deduce:

(E, R)

(E ∪ {s ≈ t}, R) if s ←R u →R t

delete:

(E ∪ {s ≈ s}, R)

(E, R)

simplify:

(E ∪ {s .≈ t}, R)

(E ∪ {u .≈ t}, R) if s →R u

compose:

(E, R ∪ {s → t})
(E, R ∪ {s → u}) if t →R u

collapse:

(E, R ∪ {s → t})
(E ∪ {v ≈ t}, R) if s

!→R v

Figure 3-3: Standard Knuth-Bendix Completion (C)

A deduction of C, written (E, R) &C (E ′, R′), consists of finite sets of identities

E, E ′ and rewriting systems R,R′. A execution γ of the system C is valid if it begins

with the pair (E0, ∅) and is followed by a possibly infinite sequence of deductions

(E0, ∅) &C (E1, R1) &C (E2, R2) &C · · · ,

where E0 is the finite set of identities provided as input by the user, and each

deduction results from an application of exactly one of the inference rules of C.

The persistent identities Eω (persistent rules Rω) are those that appear in

some intermediate set of identities Ei (rules Ri) and remain in all future intermediate

sets of identities Ej (rules Rj) for j > i,

Eω =
⋃

i∈N

⋂

j≥i

Ej and Rω =
⋃

i∈N

⋂

j≥i

Rj.

The persistent sets are used to reason about infinite executions of a completion pro-

cedure, and to state the main theorem about the correctness of C. For consistency,

we allow finite executions to be consider as infinite executions: a finite execution γ of

length n can be extended to an infinite execution γ̂ such that (Em, Rm) = (En, Rn)



Correctness of 
Completion

• If executions eventually consider all critical 
pairs (are fair) and can orient every identity 
(is non-failing), completion succeeds.

• Theorem: a non-failing, fair execution with 
identities E yields a convergent, equivalent 
rewriting system R, which can be used to 
solve the word problem for E. 

36



Completion and CGE2

• Recall: completion doesn’t work with the 
two commuting endomorphisms 
(CGE2) theory.

• Doesn’t fail (technically) because it never 
starts.

• How to orient identities? What reduction 
order to use? 

37
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and termination of the resulting system verified by AProVE. This is a completely

new result and we consider it to be Slothrop’s defining achievement.

1 ∗ x ≈ x x−1 ∗ x ≈ 1 (x ∗ y) ∗ z ≈ x ∗ (y ∗ z)

f(x ∗ y) ≈ f(x) ∗ f(y) g(x ∗ y) ≈ g(x) ∗ g(y) f(x) ∗ g(y) ≈ g(y) ∗ f(x)

Figure 7-5: The Theory of Two Commuting Group Endomorphisms (CGE2)

(x ∗ y) ∗ z → x ∗ (y ∗ z) f(1) → 1

x−1 ∗ x → 1 (f(x))−1 → f(x−1)

x ∗ x−1 → 1 f(x) ∗ f(y) → f(x ∗ y)

x ∗ (x−1 ∗ y) → y f(x) ∗ (f(y) ∗ z) → f(x ∗ y) ∗ z

x−1 ∗ (x ∗ y) → y g(1) → 1

(x ∗ y)−1 → y−1 ∗ x−1 (g(x))−1 → g(x−1)

1 ∗ x → x g(x) ∗ g(y) → g(x ∗ y)

x ∗ 1 → x g(x) ∗ (g(y) ∗ z) → g(x ∗ y) ∗ z

1−1 → 1 f(x) ∗ g(y) → g(y) ∗ f(x)

(x−1)−1 → x f(x) ∗ (g(y) ∗ z) → g(y) ∗ (f(x) ∗ z)

Figure 7-6: Convergent Completion of CGE2

Using unfailing completion [3], Waldmeister is able to complete CGE2

as well, but constructs a larger system which is ground-confluent only — i.e, it

contains identities as well as rewrite rules. This system is often less helpful than

a small convergent completion, for example, in characterizing the normal forms of

the system for algebraic proof mining [36]. Furthermore, Waldmeister does not

appear to be able to find this ground-convergent completion fully automatically; a

carefully selected Knuth-Bendix order (given in [32]) must be provided. Slothrop

is able to find the convergent completion with no input from the user other than the

theory itself. (This still takes more than an hour, however, even using the heuristic

described in Chap. 6.)



The Reduction Order 
Requirement

• Completion requires the user to provide a 
compatible reduction order. 

• Can’t find one. We’ve looked. 

• Even if we found one, we couldn’t specify it 
– no orders supported by tools (e.g. 
Waldmeister) are compatible.

• Without an order, completion is useless.  

38



Issues with Completion

1. Compatible orders hard for the user to find 
and specify. 

2. Implementations only implement a few 
classes, so even if an order exists, user can’t 
make use of it. 

39



• Problems manifested in the orient rule – 
only place the presupposed order is 
mentioned. 

• Completion would work for more theories 
if the system provided the order instead of 
the user. 

The Orient Rule

40
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deduction results from an application of exactly one of the inference rules of C.
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some intermediate set of identities Ei (rules Ri) and remain in all future intermediate

sets of identities Ej (rules Rj) for j > i,

Eω =
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i∈N
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j≥i
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i∈N

⋂

j≥i

Rj.

The persistent sets are used to reason about infinite executions of a completion pro-

cedure, and to state the main theorem about the correctness of C. For consistency,

we allow finite executions to be consider as infinite executions: a finite execution γ of

length n can be extended to an infinite execution γ̂ such that (Em, Rm) = (En, Rn)



A New Orient Rule

• Idea: what if we use a termination checker 
instead? 

• New orient precondition: require that 
adding s → t preserves termination of the 
rewriting system. 

• Implies the existence of a compatible 
reduction order. 



Correctness of the New 
Orient Rule

• Different from standard completion in an 
important way –

• Termination implies the existence of a 
compatible order, but the order could be 
different each time the orient rule is 
applied. 

• Like performing completion with multiple 
orders. 
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• A version of completion with multiple 
orders was used for years (without 
correctness proof). 

• Changing orders is a useful feature.

• If an unorientable identity is encountered, 
just find another compatible order and keep 
going. 

Completion with 
Multiple Orders



Multiple Orders Not 
Correct

• Correctness an open problem for years.

• Settled in the negative by Sattler-Klein in ‘94. 

• Multiple orders can yield non-confluent, 
non-terminating systems.
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• But Sattler-Klein also proved that one kind 
of multi-ordered completion is correct:

• For finite executions without compose or 
collapse, completion works with multiple 
orders.

A Correct Special Case



Compose and Collapse

• Why? These are the only rules that change 
or remove rules from the current rewriting 
system. 

• Without these, the intermediate rewrite 
systems form an increasing chain.

• The final order could have been used from 
the start without failure. 
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a rule l →R r ∈ R such that l is not reducible by the rule s →R t. This technical

side-condition is a requirement for the proof of correctness, irrelevant to later proofs.

orient:

(E ∪ {s .≈ t}, R)

(E, R ∪ {s → t}) if s > t

deduce:

(E, R)

(E ∪ {s ≈ t}, R) if s ←R u →R t

delete:

(E ∪ {s ≈ s}, R)

(E, R)

simplify:

(E ∪ {s .≈ t}, R)

(E ∪ {u .≈ t}, R) if s →R u

compose:

(E, R ∪ {s → t})
(E, R ∪ {s → u}) if t →R u

collapse:

(E, R ∪ {s → t})
(E ∪ {v ≈ t}, R) if s

!→R v

Figure 3-3: Standard Knuth-Bendix Completion (C)

A deduction of C, written (E, R) &C (E ′, R′), consists of finite sets of identities

E, E ′ and rewriting systems R,R′. A execution γ of the system C is valid if it begins

with the pair (E0, ∅) and is followed by a possibly infinite sequence of deductions

(E0, ∅) &C (E1, R1) &C (E2, R2) &C · · · ,

where E0 is the finite set of identities provided as input by the user, and each

deduction results from an application of exactly one of the inference rules of C.

The persistent identities Eω (persistent rules Rω) are those that appear in

some intermediate set of identities Ei (rules Ri) and remain in all future intermediate

sets of identities Ej (rules Rj) for j > i,

Eω =
⋃

i∈N

⋂

j≥i

Ej and Rω =
⋃

i∈N

⋂

j≥i

Rj.

The persistent sets are used to reason about infinite executions of a completion pro-

cedure, and to state the main theorem about the correctness of C. For consistency,

we allow finite executions to be consider as infinite executions: a finite execution γ of

length n can be extended to an infinite execution γ̂ such that (Em, Rm) = (En, Rn)



Constraint System
• Could use new orient rule without compose 

and collapse, but they’re good for 
performance. 

• Instead: check termination of a constraint 
rewriting system not affected by compose 
and collapse. 

• Lemma: Termination of constraint system 
implies termination of rewriting system and 
existence of increasing chain of reduction 
orders. 
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Revised Completion

30

A. An execution α of the system A is valid if it begins with the triple (E0, ∅, ∅) and

is followed by a sequence of deductions

(E0, ∅, ∅) "A (E1, R1, C1) "A (E2, R2, C2) "A · · · ,

with E0 the set of input identities and where each deduction results from an applica-

tion of one inference rule from A. An execution α of A is equivalent to an execution

γ of C when the intermediate equations and rewriting systems are the same at each

step. A execution α of system A succeeds when E|α| = ∅ and R|α| is a convergent

rewriting system equivalent to E.

orient:

(E ∪ {s .≈ t}, R, C)

(E, R ∪ {s → t}, C ∪ {s → t}) if C ∪ {s → t} terminates

deduce:

(E, R,C)

(E ∪ {s ≈ t}, R, C) if s ←R u →R t

delete:

(E ∪ {s ≈ s}, R, C)

(E, R,C)

simplify:

(E ∪ {s .≈ t}, R, C)

(E ∪ {u .≈ t}, R, C) if s →R u

compose:

(E, R ∪ {s → t}, C)

(E, R ∪ {s → u}, C) if t →R u

collapse:

(E, R ∪ {s → t}, C)

(E ∪ {v ≈ t}, R, C) if s
!→R v

Figure 5-1: Modified Knuth-Bendix Completion (A)

The rules deduce, delete, simplify, compose and collapse of A are

identical to those of C, except for the presence of the constraint system C which is

carried unmodified from antecedent to consequent. The critical difference between

A and C is in the definition of the orient rule. In the standard system C, an

identity s
.
= t of E is added to R as rule s → t only when s > t for the given

reduction order. In the modified system A, we add the rule s → t to R only when

the augmented constraint system C∪{s → t} is terminating. The system A accepts

as input only the finite set of identities E; no reduction order is explicitly provided.

• Key differences: constraint system C and 
termination predicate in orient precondition.



Completion Search

• What if a if a rule can be oriented two 
different ways? 

• Just try both. Search for a correct 
completion. 

• (Search avoids pesky infinite executions 
mentioned earlier.)

• Breadth-first search guarantees that we will 
eventually find a completion. 
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• Revised method is correct.

• Order is discovered, not provided.

• With perfect termination-checking ability, 
the method completes any theory 
compatible with some reduction order.

• With real termination-checking program 
that decides a class of orders O, then revised 
method completes any theory compatible 
with an order in O. 
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Revised Completion



Slothrop

• Implementation of revised procedure: 
Slothrop. 

• ~7000-line Ocaml program

• Integrated with AProVE termination checker 
with help from that team.
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• Slothrop completes a variety of theories 
(e.g., groups and other algebraic structures).

• Completed CGE2 – first ever automatic 
completion!
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Completion of CGE245

and termination of the resulting system verified by AProVE. This is a completely

new result and we consider it to be Slothrop’s defining achievement.

1 ∗ x ≈ x x−1 ∗ x ≈ 1 (x ∗ y) ∗ z ≈ x ∗ (y ∗ z)

f(x ∗ y) ≈ f(x) ∗ f(y) g(x ∗ y) ≈ g(x) ∗ g(y) f(x) ∗ g(y) ≈ g(y) ∗ f(x)

Figure 7-5: The Theory of Two Commuting Group Endomorphisms (CGE2)

(x ∗ y) ∗ z → x ∗ (y ∗ z) f(1) → 1

x−1 ∗ x → 1 (f(x))−1 → f(x−1)

x ∗ x−1 → 1 f(x) ∗ f(y) → f(x ∗ y)

x ∗ (x−1 ∗ y) → y f(x) ∗ (f(y) ∗ z) → f(x ∗ y) ∗ z

x−1 ∗ (x ∗ y) → y g(1) → 1

(x ∗ y)−1 → y−1 ∗ x−1 (g(x))−1 → g(x−1)

1 ∗ x → x g(x) ∗ g(y) → g(x ∗ y)

x ∗ 1 → x g(x) ∗ (g(y) ∗ z) → g(x ∗ y) ∗ z

1−1 → 1 f(x) ∗ g(y) → g(y) ∗ f(x)

(x−1)−1 → x f(x) ∗ (g(y) ∗ z) → g(y) ∗ (f(x) ∗ z)

Figure 7-6: Convergent Completion of CGE2

Using unfailing completion [3], Waldmeister is able to complete CGE2

as well, but constructs a larger system which is ground-confluent only — i.e, it

contains identities as well as rewrite rules. This system is often less helpful than

a small convergent completion, for example, in characterizing the normal forms of

the system for algebraic proof mining [36]. Furthermore, Waldmeister does not

appear to be able to find this ground-convergent completion fully automatically; a

carefully selected Knuth-Bendix order (given in [32]) must be provided. Slothrop

is able to find the convergent completion with no input from the user other than the

theory itself. (This still takes more than an hour, however, even using the heuristic

described in Chap. 6.)



Performance

• Time: 1m to find G completion, 2m for GE1, 
1.5h for CGE2. 

• Calls to AProVE: 40 calls to complete G, 130 
for GE1, 4000 for CGE2. 

• > 95% of runtime spent in AProVE, but most 
calls return in < 0.5s. 



AProVE is Fast
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x ∗ 1 → x x ∗ (y ∗ z) → (x ∗ y) ∗ z

1 ∗ x → x (x ∗ y)−1 → x−1 ∗ y−1

x ∗ x−1 → 1 (x ∗ y) ∗ y−1 → x

x−1 ∗ x → 1 (x ∗ y−1) ∗ y → x

1−1 → 1 h(x)−1 → h(x−1)

h(1) → 1 h(x) ∗ h(y) → h(x ∗ y)

(x−1)−1 → x (x ∗ h(y)) ∗ h(z) → x ∗ h(y ∗ z)

Figure 7-2: Convergent Completion of GE1

The majority of Slothrop’s running time is spent waiting for calls to AProVE.

Although we have encountered many examples of rewriting systems which AProVE

can show terminating after a prohibitively long amount of time, in practice we have

found that it is uncommon for such difficult systems to appear on the branch of a

successful execution. Most calls to AProVE that occur on successful branches re-

turn in under 2 seconds. Figure 7-3 shows the time for each call to AProVE while

completing GE1, in which most calls require fewer than 0.25 seconds and all fewer

than 0.5 seconds. Completeness of Slothrop can be exchanged for performance

enhancements by calling AProVE with a short timeout. The above completions

were obtained with a 5-second timeout.
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Figure 7-3: Time in AProVE Completing GE1



• Efficiency is the only limitation of technique. 

• Works well on small theories, but is slow on 
large theories. 

• Improved termination checking will help, 
better search heuristics will help more. 

• Open question: when is a partial 
completion nearly a completion? 
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Slothrop



Conclusion

• Thanks to:

• Aaron Stump and Eddy Westbrook for big 
ideas and major contributions to 
correctness proof.

• Everyone here for sitting through the 
whole dang talk. 
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Conclusion

• Fin.
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