
Knuth-Bendix
Completion with

Modern Termination
Checking

Ian Wehrman
Thesis Defense
July 26, 2006

1

Equational Automated
Theorem Proving

• Want to solve the word problem
automatically.

• Does a finite set of identities (a theory)
entail another identity?

2

Example Theory:
Groups

• For example, the theory of groups (G) is
axiomatized by three identities:

3

x ∗ 1 ≈ x x ∗ x
−1

≈ 1 x ∗ (y ∗ z) ≈ (x ∗ y) ∗ z

Word Problem for
Groups

• The word problem for G: is an identity a
consequence of the axioms of group theory?

• E.g., a left-inverse lemma:

4

G |= x
−1 ∗ x

?

≈ 1

Proof about Groups

• Yes, there is a left inverse lemma! Here’s the
proof:

5

x
−1

∗ x ≈ x
−1

∗ (x ∗ 1) (1)
≈ x

−1
∗ (x ∗ (x−1

∗ (x−1)−1)) (1)
≈ x

−1
∗ ((x ∗ x

−1) ∗ (x−1)−1) (3)
≈ x

−1
∗ (1 ∗ (x−1)−1) (2)

≈ (x−1
∗ 1) ∗ (x−1)−1 (3)

≈ x
−1

∗ (x−1)−1 (1)
≈ 1 (2)

Automating Group
Theory Proofs

• That proof looked a little tricky.

• Q) How long did it take me to find it?

• A) About 0.2s – I used an automated
theorem prover! (Much longer with just
my head.)

6

Group Theory
Completion

• Used a tool called Waldmeister that
implements an algorithm called
completion.

• Input: theory (finite set of identities).

• Output: rewriting system (also called a
completion) used to decide whether or
not an identity holds.

7

Group Theory
Completion

• Input: G

• Output: rewriting system equivalent to G.

• To prove an identity holds, rewrite both
sides, then test for equality.

8

17

iterative, generating a sequence of intermediate rewriting systems which have the-

ories that are, roughly speaking, successively better better approximations of the

input theory E. The given reduction order is used to ensure that each intermediate

rewriting system is terminating and hence can safely (finitely) be used to calculate

normal forms during execution.

As an example, the theory of groups (G) is presented in Fig. 3-1. Group

theory is particularly well-suited to automated theorem proving procedures such as

completion because it is axiomatized by just a few identities. For ease of presenta-

tion, we use infix symbols such as ∗ as shorthand for a function symbols as described

above.

1 ∗ x ≈ x x−1 ∗ x ≈ 1 (x ∗ y) ∗ z ≈ x ∗ (y ∗ z)

Figure 3-1: The Theory of Groups (G)

One possible completion of G is shown in Fig. 3-2, a ten-rule term rewriting

system. It is easy to see that all the rewrite rules in the completion are compatible

with a lexicographic path order with precedence −−1 > ∗ > 1. Note however that

orders based on the size of the terms or the subterm order are not sufficient to prove

that the the system is terminating.

1 ∗ x → x x ∗ 1 → x 1−1 → 1

(x−1)−1 → x (x ∗ y)−1 → x−1 ∗ y−1 (x ∗ y) ∗ z → x ∗ (y ∗ z)

x ∗ x−1 → 1 x−1 ∗ x → 1

x ∗ (x−1 ∗ y) → y x−1 ∗ (x ∗ y) → y

Figure 3-2: A Convergent Completion of G

Leo Bachmair reformulated the original Knuth-Bendix completion procedure,

which was originally published as a deterministic algorithm, as a nondeterministic

equational inference system [2], and proved it correct (stated in Sect. 3.1). We

refer to this standard inference system as C because it will serves as the basis of a

correctness condition for a refinement of the procedure that will be developed later.

The rules of the inference system C are shown in Fig. 3-3. The notation s
.≈ t means

either s ≈ t or t ≈ s. The notation s
!→R v means that the term s is reduced with

17

iterative, generating a sequence of intermediate rewriting systems which have the-

ories that are, roughly speaking, successively better better approximations of the

input theory E. The given reduction order is used to ensure that each intermediate

rewriting system is terminating and hence can safely (finitely) be used to calculate

normal forms during execution.

As an example, the theory of groups (G) is presented in Fig. 3-1. Group

theory is particularly well-suited to automated theorem proving procedures such as

completion because it is axiomatized by just a few identities. For ease of presenta-

tion, we use infix symbols such as ∗ as shorthand for a function symbols as described

above.

1 ∗ x ≈ x x−1 ∗ x ≈ 1 (x ∗ y) ∗ z ≈ x ∗ (y ∗ z)

Figure 3-1: The Theory of Groups (G)

One possible completion of G is shown in Fig. 3-2, a ten-rule term rewriting

system. It is easy to see that all the rewrite rules in the completion are compatible

with a lexicographic path order with precedence −−1 > ∗ > 1. Note however that

orders based on the size of the terms or the subterm order are not sufficient to prove

that the the system is terminating.

1 ∗ x → x x ∗ 1 → x 1−1 → 1

(x−1)−1 → x (x ∗ y)−1 → x−1 ∗ y−1 (x ∗ y) ∗ z → x ∗ (y ∗ z)

x ∗ x−1 → 1 x−1 ∗ x → 1

x ∗ (x−1 ∗ y) → y x−1 ∗ (x ∗ y) → y

Figure 3-2: A Convergent Completion of G

Leo Bachmair reformulated the original Knuth-Bendix completion procedure,

which was originally published as a deterministic algorithm, as a nondeterministic

equational inference system [2], and proved it correct (stated in Sect. 3.1). We

refer to this standard inference system as C because it will serves as the basis of a

correctness condition for a refinement of the procedure that will be developed later.

The rules of the inference system C are shown in Fig. 3-3. The notation s
.≈ t means

either s ≈ t or t ≈ s. The notation s
!→R v means that the term s is reduced with

Group Theory Proofs
Made Easy

• With a completion, it’s easy to solve the
word problem. Works every time.

9

(y ∗ x)−1
∗ (x ∗ y) → (y−1

∗ x
−1) ∗ (x ∗ y)

→ y
−1

∗ (x−1
∗ (x ∗ y))

→ y
−1

∗ y

→ 1

(y ∗ x) ∗ (x ∗ y)−1
→ (y ∗ x) ∗ (x−1

∗ y
1)

→ y ∗ (x ∗ (x−1
∗ y

−1))
→ y ∗ y

−1

→ 1

Another Completion

• Input: groups + one endomorphism (GE1).

• Output: completion for GE1. Use this to
solve the word problem for GE1. Easy!

10

42

Chapter 7

Results and Performance

Not outward, into the simple Mysteries of an open Sea, but inward, — branch-
ing, narrowing, compressing towards an Enigma as opaque and perilous as any
in my Travels.

Mason & Dixon

Slothrop is capable of completing a variety of theories fully automatically

in a modest amount of time. For example, the standard ten-rule completion of the

group axioms is discovered in under three seconds on a modern desktop PC. On

the way to this completion, it encounters 27 orientations, roughly half of which are

not trivially nonterminating and must be verified with AProVE. On the execution

branch that leads to a completion, however, only two orientation steps are required.

Slothrop automatically completes the theory of groups plus a single endomor-

phism (GE1, shown in Fig. 7-1) in under ten seconds, requiring about a hundred

calls to AProVE. The completion discovered is shown in Fig. 7-2.

1 ∗ x ≈ x (x ∗ y) ∗ z ≈ x ∗ (y ∗ z)

x−1 ∗ x ≈ 1 h(x ∗ y) ≈ h(x) ∗ h(y)

Figure 7-1: The Theory of One Group Endomorphism (GE1)

A large theory with 21 identities corresponding to propositional proof simpli-

fication rules [36] is considerably more difficult to complete because of the number

of orientations. Nonetheless, Slothrop does find a completion without user inter-

vention after about seven hours and three thousand calls to AProVE.

43

x ∗ 1 → x x ∗ (y ∗ z) → (x ∗ y) ∗ z

1 ∗ x → x (x ∗ y)−1 → x−1 ∗ y−1

x ∗ x−1 → 1 (x ∗ y) ∗ y−1 → x

x−1 ∗ x → 1 (x ∗ y−1) ∗ y → x

1−1 → 1 h(x)−1 → h(x−1)

h(1) → 1 h(x) ∗ h(y) → h(x ∗ y)

(x−1)−1 → x (x ∗ h(y)) ∗ h(z) → x ∗ h(y ∗ z)

Figure 7-2: Convergent Completion of GE1

The majority of Slothrop’s running time is spent waiting for calls to AProVE.

Although we have encountered many examples of rewriting systems which AProVE

can show terminating after a prohibitively long amount of time, in practice we have

found that it is uncommon for such difficult systems to appear on the branch of a

successful execution. Most calls to AProVE that occur on successful branches re-

turn in under 2 seconds. Figure 7-3 shows the time for each call to AProVE while

completing GE1, in which most calls require fewer than 0.25 seconds and all fewer

than 0.5 seconds. Completeness of Slothrop can be exchanged for performance

enhancements by calling AProVE with a short timeout. The above completions

were obtained with a 5-second timeout.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 20 40 60 80 100 120 140

T
im

e
 (

s
)

Call

Figure 7-3: Time in AProVE Completing GE1

Completion Fails!

• Input: theory of groups + two commuting
endomorphisms (CGE2).

• Output: ... not a completion!

• Without a completion, we must use our
heads to prove identities hold in CGE2.

11

45

and termination of the resulting system verified by AProVE. This is a completely

new result and we consider it to be Slothrop’s defining achievement.

1 ∗ x ≈ x x−1 ∗ x ≈ 1 (x ∗ y) ∗ z ≈ x ∗ (y ∗ z)

f(x ∗ y) ≈ f(x) ∗ f(y) g(x ∗ y) ≈ g(x) ∗ g(y) f(x) ∗ g(y) ≈ g(y) ∗ f(x)

Figure 7-5: The Theory of Two Commuting Group Endomorphisms (CGE2)

(x ∗ y) ∗ z → x ∗ (y ∗ z) f(1) → 1

x−1 ∗ x → 1 (f(x))−1 → f(x−1)

x ∗ x−1 → 1 f(x) ∗ f(y) → f(x ∗ y)

x ∗ (x−1 ∗ y) → y f(x) ∗ (f(y) ∗ z) → f(x ∗ y) ∗ z

x−1 ∗ (x ∗ y) → y g(1) → 1

(x ∗ y)−1 → y−1 ∗ x−1 (g(x))−1 → g(x−1)

1 ∗ x → x g(x) ∗ g(y) → g(x ∗ y)

x ∗ 1 → x g(x) ∗ (g(y) ∗ z) → g(x ∗ y) ∗ z

1−1 → 1 f(x) ∗ g(y) → g(y) ∗ f(x)

(x−1)−1 → x f(x) ∗ (g(y) ∗ z) → g(y) ∗ (f(x) ∗ z)

Figure 7-6: Convergent Completion of CGE2

Using unfailing completion [3], Waldmeister is able to complete CGE2

as well, but constructs a larger system which is ground-confluent only — i.e, it

contains identities as well as rewrite rules. This system is often less helpful than

a small convergent completion, for example, in characterizing the normal forms of

the system for algebraic proof mining [36]. Furthermore, Waldmeister does not

appear to be able to find this ground-convergent completion fully automatically; a

carefully selected Knuth-Bendix order (given in [32]) must be provided. Slothrop

is able to find the convergent completion with no input from the user other than the

theory itself. (This still takes more than an hour, however, even using the heuristic

described in Chap. 6.)

Our Mission

• Revise the algorithm used by Waldmeister.

• Use it to find a completion for CGE2.

• Solve the word problem for CGE2 without
using our heads.

12

But first...

• Waldmeister’s algorithm relies on results in
the exciting field of term rewriting.

• Today’s agenda:

• Cover important details about the word
problem and term rewriting.

• Describe completion (Waldmeister’s
algorithm).

• See why completion fails and then fix it.

13

All About the Word
Problem

• It’s undecidable (in general).

• Can decide the word problem for some
theories, but not all.

14

u1 ≈ v1, u2 ≈ v2, . . . , un ≈ vn |= t1 ≈ tn

Word Problem Proofs
• How do we know an identity holds in a

theory? Find a proof.

• Proof is a sequence of terms: starting with
one side of the identity and ending with the
other side.

• Successive terms created by replacing
instances of one side of the theory axioms
with instances of the other.

• Easy to check, but hard to find.

15

Solving the Word
Problem by Rewriting

• Idea: orient axioms – now called rules.

• Replace instances of lhs with instances of
rhs – called rewriting.

• Rewrite terms to normal form.

• Two sides of identity have same normal form
iff identity holds.

16

Rewriting to Normal
Form

17

• To solve the word problem like this, normal
forms must:

• require finitely many reductions,

• be unique – same end result regardless of
reduction sequence.

Properties of Rewriting
Systems

• Corresponds to the two most important
properties of rewriting systems:

• Termination: no infinitely long
reduction sequences.

• Confluence: if a term is rewritten to
distinct terms, then those terms can be
rewritten to a common term (joined).

• Termination + confluence = convergence.

18

Rewriting Example 1
• The non-confluent, terminating system

applied to term f(x,g(x)) yields any of
these reduction sequences:

19

f(x, y) → x g(x) → x f(x, x) → h(x)

1. f(x, g(x)) → x
2. f(x, g(x)) → f(x, x) → h(x)

Rewriting Example 2
• The confluent, nonterminating system

20

applied to term f(x) yields this looping
reduction sequence:

f(x) → g(h(x)) g(x) → f(x)

f(x) → g(h(x)) →
f(h(x)) → g(h(h(x))) →
f(h(h(x))) → g(h(h(h(x)))) →
f(h(h(h(x)))) → g(h(h(h(h(x))))) → · · ·

Rewriting Example 3
• The convergent system

ack(0, n) → n + 1
ack(m + 1, 0) → ack(m, 1)
ack(m + 1, n + 1) → ack(m, ack(m + 1, n))

applied to term ack(3,3) yields this long
reduction sequence:

ack(3, 3) → ack(2, ack(3, 2)) → ack(2, (ack(2, (ack(3, 1))))) →
ack(2, (ack(2, (ack(2, ack(3, 0)))))) → ack(2, (ack(2, (ack(2, ack(2, 1)))))) →
ack(2, (ack(2, (ack(2, ack(1, ack(2, 0))))))) → · · · → 61

21

Proving Rewriting
Properties

• To solve the word problem with rewriting,
systems must be terminating and confluent.

• How do we prove these properties?

• What if we can’t?

22

Proving Termination

• Prove a system is terminating with special
well-founded ordering relation: a
reduction order.

• Theorem: a system is terminating iff a
compatible reduction order exists.

• An order > is compatible with a rewriting
system if l > r for all rules l → r.

23

Proving Termination

• Termination is undecidable (reduction from
halting problem), so finding a compatible
ordering is tough.

• Could also be impossible – e.g., any theory
with the identity x + y ≈ y + x is not
compatible with any reduction order.

24

Automated Termination
Checkers

• Interesting aside: there are nifty tools to
automatically prove termination.

• Works for systems that are compatible with
any one of a variety of reduction orders.

• E.g., AProVE: fast, effective and produces
human-readable proofs.

• Could be useful later...?

25

Proving Confluence

• Confluence is undecidable in general,

• But decidable for rewriting systems that are
terminating.

26

Deciding Confluence
for Terminating Systems
• Try to rewrite a common instance of two

rules’ lhs to different terms: t2← s1 → t1.

• Try to join those terms to a common term:
t1 → s2 ← t2.

• (t1 ,t2) called a critical pair.

• Theorem: joinability of all critical pairs
implies confluence for terminating
systems.

27

Critical Pair Example 1

• Common instances of rules’ lhs rewrites
two ways:

f(x, g(x)) → x g(g(x)) → x

g(x) ← f(g(x), g(g(x))) → f(g(x), x)

28

Non-Confluent Systems

• If system is not confluent, sometimes we can
find an equivalent system that is.

• Systems are equivalent if an identity holds in
one system iff it holds in the other.

29

Creating Confluent
Systems

• Start with a terminating system, compatible
with reduction order >.

• Calculate a non-joinable critical pair (t1,t2)

• If t1 > t2, then add rule t1 → t2 to system.

• Continue until all critical pairs are joinable.

30

Critical Pair Example 2

• Add unjoinable critical pair as rewrite rule.
New, equivalent system:

f(x, g(x)) → x g(g(x)) → x

g(x) ← f(g(x), g(g(x))) → f(g(x), x)

31

f(x, g(x)) → x g(g(x)) → x f(g(x), x) → g(x)

Completion

• Called completion, invented by Knuth.

• Completion can solve the word
problem.

• Use the equivalent, covergent rewrite
system (the completion) to normalize
both sides of any identity.

• If normal forms are the same, identity
holds, otherwise it doesn’t.

32

Limits of Completion
• Completion doesn’t always work:

• An unorientable critical pair could be
generated (completion fails);

• Critical pair generation might not
terminate.

• Fails only if reduction order is incompatible
with the new rule.

• (Can show that “infinite” executions lead to
semidecision procedure.)

33

Completion Specified
Formally

• Completion typically specified as an
inference system.

• Operates on tuples (E,R) – set of identities
and rewrite system.

• Start with (E0,∅) and finish with (∅,R∞).

• E0 is the theory and R∞ is an equivalent
convergent system (a completion).

34

Completion as an
Inference System

35

18

a rule l →R r ∈ R such that l is not reducible by the rule s →R t. This technical

side-condition is a requirement for the proof of correctness, irrelevant to later proofs.

orient:

(E ∪ {s .≈ t}, R)

(E, R ∪ {s → t}) if s > t

deduce:

(E, R)

(E ∪ {s ≈ t}, R) if s ←R u →R t

delete:

(E ∪ {s ≈ s}, R)

(E, R)

simplify:

(E ∪ {s .≈ t}, R)

(E ∪ {u .≈ t}, R) if s →R u

compose:

(E, R ∪ {s → t})
(E, R ∪ {s → u}) if t →R u

collapse:

(E, R ∪ {s → t})
(E ∪ {v ≈ t}, R) if s

!→R v

Figure 3-3: Standard Knuth-Bendix Completion (C)

A deduction of C, written (E, R) &C (E ′, R′), consists of finite sets of identities

E, E ′ and rewriting systems R,R′. A execution γ of the system C is valid if it begins

with the pair (E0, ∅) and is followed by a possibly infinite sequence of deductions

(E0, ∅) &C (E1, R1) &C (E2, R2) &C · · · ,

where E0 is the finite set of identities provided as input by the user, and each

deduction results from an application of exactly one of the inference rules of C.

The persistent identities Eω (persistent rules Rω) are those that appear in

some intermediate set of identities Ei (rules Ri) and remain in all future intermediate

sets of identities Ej (rules Rj) for j > i,

Eω =
⋃

i∈N

⋂

j≥i

Ej and Rω =
⋃

i∈N

⋂

j≥i

Rj.

The persistent sets are used to reason about infinite executions of a completion pro-

cedure, and to state the main theorem about the correctness of C. For consistency,

we allow finite executions to be consider as infinite executions: a finite execution γ of

length n can be extended to an infinite execution γ̂ such that (Em, Rm) = (En, Rn)

Correctness of
Completion

• If executions eventually consider all critical
pairs (are fair) and can orient every identity
(is non-failing), completion succeeds.

• Theorem: a non-failing, fair execution with
identities E yields a convergent, equivalent
rewriting system R, which can be used to
solve the word problem for E.

36

Completion and CGE2

• Recall: completion doesn’t work with the
two commuting endomorphisms
(CGE2) theory.

• Doesn’t fail (technically) because it never
starts.

• How to orient identities? What reduction
order to use?

37

45

and termination of the resulting system verified by AProVE. This is a completely

new result and we consider it to be Slothrop’s defining achievement.

1 ∗ x ≈ x x−1 ∗ x ≈ 1 (x ∗ y) ∗ z ≈ x ∗ (y ∗ z)

f(x ∗ y) ≈ f(x) ∗ f(y) g(x ∗ y) ≈ g(x) ∗ g(y) f(x) ∗ g(y) ≈ g(y) ∗ f(x)

Figure 7-5: The Theory of Two Commuting Group Endomorphisms (CGE2)

(x ∗ y) ∗ z → x ∗ (y ∗ z) f(1) → 1

x−1 ∗ x → 1 (f(x))−1 → f(x−1)

x ∗ x−1 → 1 f(x) ∗ f(y) → f(x ∗ y)

x ∗ (x−1 ∗ y) → y f(x) ∗ (f(y) ∗ z) → f(x ∗ y) ∗ z

x−1 ∗ (x ∗ y) → y g(1) → 1

(x ∗ y)−1 → y−1 ∗ x−1 (g(x))−1 → g(x−1)

1 ∗ x → x g(x) ∗ g(y) → g(x ∗ y)

x ∗ 1 → x g(x) ∗ (g(y) ∗ z) → g(x ∗ y) ∗ z

1−1 → 1 f(x) ∗ g(y) → g(y) ∗ f(x)

(x−1)−1 → x f(x) ∗ (g(y) ∗ z) → g(y) ∗ (f(x) ∗ z)

Figure 7-6: Convergent Completion of CGE2

Using unfailing completion [3], Waldmeister is able to complete CGE2

as well, but constructs a larger system which is ground-confluent only — i.e, it

contains identities as well as rewrite rules. This system is often less helpful than

a small convergent completion, for example, in characterizing the normal forms of

the system for algebraic proof mining [36]. Furthermore, Waldmeister does not

appear to be able to find this ground-convergent completion fully automatically; a

carefully selected Knuth-Bendix order (given in [32]) must be provided. Slothrop

is able to find the convergent completion with no input from the user other than the

theory itself. (This still takes more than an hour, however, even using the heuristic

described in Chap. 6.)

The Reduction Order
Requirement

• Completion requires the user to provide a
compatible reduction order.

• Can’t find one. We’ve looked.

• Even if we found one, we couldn’t specify it
– no orders supported by tools (e.g.
Waldmeister) are compatible.

• Without an order, completion is useless.

38

Issues with Completion

1. Compatible orders hard for the user to find
and specify.

2. Implementations only implement a few
classes, so even if an order exists, user can’t
make use of it.

39

• Problems manifested in the orient rule –
only place the presupposed order is
mentioned.

• Completion would work for more theories
if the system provided the order instead of
the user.

The Orient Rule

40

18

a rule l →R r ∈ R such that l is not reducible by the rule s →R t. This technical

side-condition is a requirement for the proof of correctness, irrelevant to later proofs.

orient:

(E ∪ {s .≈ t}, R)

(E, R ∪ {s → t}) if s > t

deduce:

(E, R)

(E ∪ {s ≈ t}, R) if s ←R u →R t

delete:

(E ∪ {s ≈ s}, R)

(E, R)

simplify:

(E ∪ {s .≈ t}, R)

(E ∪ {u .≈ t}, R) if s →R u

compose:

(E, R ∪ {s → t})
(E, R ∪ {s → u}) if t →R u

collapse:

(E, R ∪ {s → t})
(E ∪ {v ≈ t}, R) if s

!→R v

Figure 3-3: Standard Knuth-Bendix Completion (C)

A deduction of C, written (E, R) &C (E ′, R′), consists of finite sets of identities

E, E ′ and rewriting systems R,R′. A execution γ of the system C is valid if it begins

with the pair (E0, ∅) and is followed by a possibly infinite sequence of deductions

(E0, ∅) &C (E1, R1) &C (E2, R2) &C · · · ,

where E0 is the finite set of identities provided as input by the user, and each

deduction results from an application of exactly one of the inference rules of C.

The persistent identities Eω (persistent rules Rω) are those that appear in

some intermediate set of identities Ei (rules Ri) and remain in all future intermediate

sets of identities Ej (rules Rj) for j > i,

Eω =
⋃

i∈N

⋂

j≥i

Ej and Rω =
⋃

i∈N

⋂

j≥i

Rj.

The persistent sets are used to reason about infinite executions of a completion pro-

cedure, and to state the main theorem about the correctness of C. For consistency,

we allow finite executions to be consider as infinite executions: a finite execution γ of

length n can be extended to an infinite execution γ̂ such that (Em, Rm) = (En, Rn)

A New Orient Rule

• Idea: what if we use a termination checker
instead?

• New orient precondition: require that
adding s → t preserves termination of the
rewriting system.

• Implies the existence of a compatible
reduction order.

Correctness of the New
Orient Rule

• Different from standard completion in an
important way –

• Termination implies the existence of a
compatible order, but the order could be
different each time the orient rule is
applied.

• Like performing completion with multiple
orders.

43

• A version of completion with multiple
orders was used for years (without
correctness proof).

• Changing orders is a useful feature.

• If an unorientable identity is encountered,
just find another compatible order and keep
going.

Completion with
Multiple Orders

Multiple Orders Not
Correct

• Correctness an open problem for years.

• Settled in the negative by Sattler-Klein in ‘94.

• Multiple orders can yield non-confluent,
non-terminating systems.

45

• But Sattler-Klein also proved that one kind
of multi-ordered completion is correct:

• For finite executions without compose or
collapse, completion works with multiple
orders.

A Correct Special Case

Compose and Collapse

• Why? These are the only rules that change
or remove rules from the current rewriting
system.

• Without these, the intermediate rewrite
systems form an increasing chain.

• The final order could have been used from
the start without failure.

46

18

a rule l →R r ∈ R such that l is not reducible by the rule s →R t. This technical

side-condition is a requirement for the proof of correctness, irrelevant to later proofs.

orient:

(E ∪ {s .≈ t}, R)

(E, R ∪ {s → t}) if s > t

deduce:

(E, R)

(E ∪ {s ≈ t}, R) if s ←R u →R t

delete:

(E ∪ {s ≈ s}, R)

(E, R)

simplify:

(E ∪ {s .≈ t}, R)

(E ∪ {u .≈ t}, R) if s →R u

compose:

(E, R ∪ {s → t})
(E, R ∪ {s → u}) if t →R u

collapse:

(E, R ∪ {s → t})
(E ∪ {v ≈ t}, R) if s

!→R v

Figure 3-3: Standard Knuth-Bendix Completion (C)

A deduction of C, written (E, R) &C (E ′, R′), consists of finite sets of identities

E, E ′ and rewriting systems R,R′. A execution γ of the system C is valid if it begins

with the pair (E0, ∅) and is followed by a possibly infinite sequence of deductions

(E0, ∅) &C (E1, R1) &C (E2, R2) &C · · · ,

where E0 is the finite set of identities provided as input by the user, and each

deduction results from an application of exactly one of the inference rules of C.

The persistent identities Eω (persistent rules Rω) are those that appear in

some intermediate set of identities Ei (rules Ri) and remain in all future intermediate

sets of identities Ej (rules Rj) for j > i,

Eω =
⋃

i∈N

⋂

j≥i

Ej and Rω =
⋃

i∈N

⋂

j≥i

Rj.

The persistent sets are used to reason about infinite executions of a completion pro-

cedure, and to state the main theorem about the correctness of C. For consistency,

we allow finite executions to be consider as infinite executions: a finite execution γ of

length n can be extended to an infinite execution γ̂ such that (Em, Rm) = (En, Rn)

Constraint System
• Could use new orient rule without compose

and collapse, but they’re good for
performance.

• Instead: check termination of a constraint
rewriting system not affected by compose
and collapse.

• Lemma: Termination of constraint system
implies termination of rewriting system and
existence of increasing chain of reduction
orders.

47

48

Revised Completion

30

A. An execution α of the system A is valid if it begins with the triple (E0, ∅, ∅) and

is followed by a sequence of deductions

(E0, ∅, ∅) "A (E1, R1, C1) "A (E2, R2, C2) "A · · · ,

with E0 the set of input identities and where each deduction results from an applica-

tion of one inference rule from A. An execution α of A is equivalent to an execution

γ of C when the intermediate equations and rewriting systems are the same at each

step. A execution α of system A succeeds when E|α| = ∅ and R|α| is a convergent

rewriting system equivalent to E.

orient:

(E ∪ {s .≈ t}, R, C)

(E, R ∪ {s → t}, C ∪ {s → t}) if C ∪ {s → t} terminates

deduce:

(E, R,C)

(E ∪ {s ≈ t}, R, C) if s ←R u →R t

delete:

(E ∪ {s ≈ s}, R, C)

(E, R,C)

simplify:

(E ∪ {s .≈ t}, R, C)

(E ∪ {u .≈ t}, R, C) if s →R u

compose:

(E, R ∪ {s → t}, C)

(E, R ∪ {s → u}, C) if t →R u

collapse:

(E, R ∪ {s → t}, C)

(E ∪ {v ≈ t}, R, C) if s
!→R v

Figure 5-1: Modified Knuth-Bendix Completion (A)

The rules deduce, delete, simplify, compose and collapse of A are

identical to those of C, except for the presence of the constraint system C which is

carried unmodified from antecedent to consequent. The critical difference between

A and C is in the definition of the orient rule. In the standard system C, an

identity s
.
= t of E is added to R as rule s → t only when s > t for the given

reduction order. In the modified system A, we add the rule s → t to R only when

the augmented constraint system C∪{s → t} is terminating. The system A accepts

as input only the finite set of identities E; no reduction order is explicitly provided.

• Key differences: constraint system C and
termination predicate in orient precondition.

Completion Search

• What if a if a rule can be oriented two
different ways?

• Just try both. Search for a correct
completion.

• (Search avoids pesky infinite executions
mentioned earlier.)

• Breadth-first search guarantees that we will
eventually find a completion.

49

• Revised method is correct.

• Order is discovered, not provided.

• With perfect termination-checking ability,
the method completes any theory
compatible with some reduction order.

• With real termination-checking program
that decides a class of orders O, then revised
method completes any theory compatible
with an order in O.

50

Revised Completion

Slothrop

• Implementation of revised procedure:
Slothrop.

• ~7000-line Ocaml program

• Integrated with AProVE termination checker
with help from that team.

51

• Slothrop completes a variety of theories
(e.g., groups and other algebraic structures).

• Completed CGE2 – first ever automatic
completion!

52

Completion of CGE245

and termination of the resulting system verified by AProVE. This is a completely

new result and we consider it to be Slothrop’s defining achievement.

1 ∗ x ≈ x x−1 ∗ x ≈ 1 (x ∗ y) ∗ z ≈ x ∗ (y ∗ z)

f(x ∗ y) ≈ f(x) ∗ f(y) g(x ∗ y) ≈ g(x) ∗ g(y) f(x) ∗ g(y) ≈ g(y) ∗ f(x)

Figure 7-5: The Theory of Two Commuting Group Endomorphisms (CGE2)

(x ∗ y) ∗ z → x ∗ (y ∗ z) f(1) → 1

x−1 ∗ x → 1 (f(x))−1 → f(x−1)

x ∗ x−1 → 1 f(x) ∗ f(y) → f(x ∗ y)

x ∗ (x−1 ∗ y) → y f(x) ∗ (f(y) ∗ z) → f(x ∗ y) ∗ z

x−1 ∗ (x ∗ y) → y g(1) → 1

(x ∗ y)−1 → y−1 ∗ x−1 (g(x))−1 → g(x−1)

1 ∗ x → x g(x) ∗ g(y) → g(x ∗ y)

x ∗ 1 → x g(x) ∗ (g(y) ∗ z) → g(x ∗ y) ∗ z

1−1 → 1 f(x) ∗ g(y) → g(y) ∗ f(x)

(x−1)−1 → x f(x) ∗ (g(y) ∗ z) → g(y) ∗ (f(x) ∗ z)

Figure 7-6: Convergent Completion of CGE2

Using unfailing completion [3], Waldmeister is able to complete CGE2

as well, but constructs a larger system which is ground-confluent only — i.e, it

contains identities as well as rewrite rules. This system is often less helpful than

a small convergent completion, for example, in characterizing the normal forms of

the system for algebraic proof mining [36]. Furthermore, Waldmeister does not

appear to be able to find this ground-convergent completion fully automatically; a

carefully selected Knuth-Bendix order (given in [32]) must be provided. Slothrop

is able to find the convergent completion with no input from the user other than the

theory itself. (This still takes more than an hour, however, even using the heuristic

described in Chap. 6.)

Performance

• Time: 1m to find G completion, 2m for GE1,
1.5h for CGE2.

• Calls to AProVE: 40 calls to complete G, 130
for GE1, 4000 for CGE2.

• > 95% of runtime spent in AProVE, but most
calls return in < 0.5s.

AProVE is Fast

43

x ∗ 1 → x x ∗ (y ∗ z) → (x ∗ y) ∗ z

1 ∗ x → x (x ∗ y)−1 → x−1 ∗ y−1

x ∗ x−1 → 1 (x ∗ y) ∗ y−1 → x

x−1 ∗ x → 1 (x ∗ y−1) ∗ y → x

1−1 → 1 h(x)−1 → h(x−1)

h(1) → 1 h(x) ∗ h(y) → h(x ∗ y)

(x−1)−1 → x (x ∗ h(y)) ∗ h(z) → x ∗ h(y ∗ z)

Figure 7-2: Convergent Completion of GE1

The majority of Slothrop’s running time is spent waiting for calls to AProVE.

Although we have encountered many examples of rewriting systems which AProVE

can show terminating after a prohibitively long amount of time, in practice we have

found that it is uncommon for such difficult systems to appear on the branch of a

successful execution. Most calls to AProVE that occur on successful branches re-

turn in under 2 seconds. Figure 7-3 shows the time for each call to AProVE while

completing GE1, in which most calls require fewer than 0.25 seconds and all fewer

than 0.5 seconds. Completeness of Slothrop can be exchanged for performance

enhancements by calling AProVE with a short timeout. The above completions

were obtained with a 5-second timeout.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 20 40 60 80 100 120 140

T
im

e
 (

s
)

Call

Figure 7-3: Time in AProVE Completing GE1

• Efficiency is the only limitation of technique.

• Works well on small theories, but is slow on
large theories.

• Improved termination checking will help,
better search heuristics will help more.

• Open question: when is a partial
completion nearly a completion?

55

Slothrop

Conclusion

• Thanks to:

• Aaron Stump and Eddy Westbrook for big
ideas and major contributions to
correctness proof.

• Everyone here for sitting through the
whole dang talk.

56

Conclusion

• Fin.

57

