Knuth-Bendix

Completion with
Modern Termination
Checking

lan Wehrman
Thesis Defense

July 26, 2006

Equational Automated
Theorem Proving

® Want to solve the word problem
automatically.

® Does a finite set of identities (a theory)
entail another identity!?

Example Theory:
Groups

® For example, the theory of groups (G) is
axiomatized by three identities:

1

rxlx~x x*xx1

Word Problem for
Groups

® The word problem for G:is an identity a
consequence of the axioms of group theory!?

® E.g.,a left-inverse lemma:

(?

Gz 'xz~1

Proof about Groups

® Yes, there is a left inverse lemma! Here’s the

proof:

Automating Group
Theory Proofs

® That proof looked a little tricky.

® Q) How long did it take me to find it?

® A)About 0.2s — | used an automated
theorem prover! (Much longer with just
my head.)

Group Theory
Completion

® Used a tool called Waldmeister that
implements an algorithm called
completion.

® |nput: theory (finite set of identities).

® Output: rewriting system (also called a
completion) used to decide whether or

not an identity holds.

Group Theory
Completion

L Lodmay) e s melyss)

RS o

® |nput: G
® Output: rewriting system equivalent to G.

® TJo prove an identity holds, rewrite both
sides, then test for equality.

lxz —>x r*xl > x Gy |

)Tt = e = a7 sy (o) ss = ws (s

L rlyxr—1

X *xXT

nale g —0 @ wlEsy—g

Group Theory Proofs
Made Easy

® With a completion, it’s easy to solve the
word problem. Works every time.

(y*) * (@7 xy')

) (z*y)

ds
SN
B
i
_
s
=
N

Another Completion

gy g ag AL ollan s 29 Dollan) s ol

® |nput: groups + one endomorphism (GE)).

® Output: completion for GE|. Use this to
solve the word problem for GE,. Easy!

ghsadlis 0 rx(yxz) > (x*xy)*2

lxz — (z*xy)™! -zl xy !

1

rxrt—1 (zxy)xy ! —uw

rlixr—1 (zxy)*xy—uw

fl | Il = =l
h(1) =1 h(z)*h(y) — h(z*y)
(™)™ -2 (zxh(y) *xh(z) = z*h(y*2)

Completion Fails!

1 5 TE (G EA = (R)

flxxy) =~ f(x)x fly) glexy)=g(x)*gly) f(z)*g(y)~gy)*f(r)

® |nput: theory of groups + two commuting
endomorphisms (CGE).

e Output:... not a completion!

® Without a completion, we must use our
heads to prove identities hold in CGEx.

Our Mission

® Revise the algorithm used by VWaldmeister.

" h - Ly
ar et = T IR

But first...

® Waldmeister’s algorithm relies on results in
the exciting field of term rewriting.

® TJoday’s agenda:

® Cover important details about the word
problem and term rewriting.

® Describe completion (Waldmeister’s
algorithm).

® See why completion fails and then fix it.

13

All About the Word
Problem

¢ |t's undecidable (in general).

® Can decide the word problem for some
theories, but not all.

Word Problem Proofs

® How do we know an identity holds in a
theory? Find a proof.

® Proof is a sequence of terms: starting with
one side of the identity and ending with the
other side.

® Successive terms created by replacing
instances of one side of the theory axioms
with instances of the other.

® Easy to check, but hard to find.

15

Solving the Word
Problem by Rewriting

|dea: orient axioms — now called rules.

Replace instances of lhs with instances of
rhs — called rewriting.

Rewrite terms to nhormal form.

Two sides of identity have same normal form
iff identity holds.

Rewriting to Normal
Form

® TJo solve the word problem like this, normal
forms must: o

& U g Rt P ',:' ""C;'n.‘"'
£ . ! AgEN Y L i e TN
i g O i A b et et S T, e s Tt D g

'.-l‘." H -.I;’-.-"'.. e -

$ ek T

R P ..:'.a'.-;,. i B
2 Ef aa iy gl el Bl o e

Properties of Rewriting
Systems

® Corresponds to the two most important
properties of rewriting systems:

¢ Termination: no infinitely long
reduction sequences.

o Confluence:if a term is rewritten to
distinct terms, then those terms can be
rewritten to a common term (joined).

® Jermination + confluence = convergence.

Rewriting Example |

® The non-confluent, terminating system

applied to term f(x,g(x)) yields any of
these reduction sequences:

1. f(z,g(x)) =

2. flz,9(x)) = f(z,2) — h()

Rewriting Example 2

® The confluent, nonterminating system

f(x) — g(h(z)) g(r) — f(x)

applied to term f(x) yields this looping
reduction sequence:

Rewriting Example 3

® The convergent system

ack(0,n) - n+1
ack(m +1,0) — ack(m,1)

ack(m+1,n+ 1) — ack(m,ack(m +1,n))

applied to term ack(3,3) yields this long
reduction sequence:

,2)) — ack(2, (ack(2, (ack(3,1))))) —
(2 ack(S 0)))))) — ack(2, (ack(2, (ack(2,ack(2,1)))))) —

(2,ack(1,ack(2,0))))))) — --- — 61

21

Proving Rewriting
Properties

® Jo solve the word problem W|th rewrltlng,

SR A B LY D Qﬂ b: ﬁﬁ,.ss. & 'f'.--.: ﬂﬂ bﬁ !' a6 E ’ & il 'Fg’f Bl S

Proving lermination

® Prove a system is terminating with special
well-founded ordering relation: a
reduction order.

® Theorem:a system is terminating iff a
compatible reduction order exists.

® An order > is compatible with a rewriting
system if | > r for all rules | — r.

23

Proving Termination

® TJermination is undecidable (reduction from
halting problem), so finding a compatible
ordering is tough.

® Could also be impossible — e.g., any theory
with the identity x + y = y + x is not
compatible with any reduction order.

24

Automated Termination
Checkers

® |nteresting aside: there are nifty tools to
automatically prove termination.

® Works for systems that are compatible with
any one of a variety of reduction orders.

o E.g., AProVE:fast, effective and produces
human-readable proofs.

® Could be useful later...?

25

Proving Confluence

Deciding Confluence
for Terminating Systems

® [ry to rewrite a common instance of two
rules’ lhs to different terms: t2¢ s; = t).

® T[ry to join those terms to a common term:
faseraiS s)

® (t; t2) called a critical pair.

® Theorem: joinability of all critical pairs
implies confluence for terminating
systems.

27

Critical Pair Example |

® Common instances of rules’ |hs rewrites
two ways:

28

Non-Confluent Systems

® |f system is not confluent, sometimes we can
find an equwalent system that is.

ol o T U ey R O i
s WA "ru""'ll.) _""""’ s “-"il-""r"-"ﬂn-v".:. "-"3. i' " "':""':ﬂ.' e

s) 1 o uf
Caud ._ WL }
g, B e rq_ F’ :‘-.. ;

._'=.l| -'| ..- ST ' -!.-_ r_-.;-_.-_.;- il el : Wi .
Y '.',F?"-?.“ ':':-‘.'TJ E R @ - .'1'4_5.-. L Ly ..TT T "_--'--- Py el g

Creating Confluent
Systems

Start with a terminating system, compatible
with reduction order >.

Calculate a non-joinable critical pair (t/,t2)

If t; > t2, then add rule t; — t; to system.

Continue until all critical pairs are joinable.

30

Critical Pair Example 2

glg(z)) — =

® Add unjoinable critical pair as rewrite rule.
New, equivalent system:

31

Completion

e Called completion, invented by Knuth.

® Completion can solve the word
problem.

® Use the equivalent, covergent rewrite
system (the completion) to normalize
both sides of any identity.

® |f normal forms are the same, identity
holds, otherwise it doesn’t.

32

Limits of Completion

® Completion doesn’t always work:

® An unorientable critical pair could be
generated (completion fails);

® Critical pair generation might not
terminate.

® Fails only if reduction order is incompatible
with the new rule.

® (Can show that “infinite” executions lead to
semidecision procedure.)

33

Completion Specified
Formally

Completion typically specified as an
inference system.

Operates on tuples (E,R) — set of identities
and rewrite system.

Start with (Eq,&D) and finish with (&J,R-).

Eo is the theory and R« is an equivalent
convergent system (a completion).

34

Completion as an
Inference System

(EU{s=t},R)
ORIENT: (E,RU{s — t}) if s >t
(E,R)
DEDUCE: (EU{s~t},R) if s —pu—pgt
(EU{s =~ s}, R)
DELETE: (E, R)
FEU{s=~t},R)

(
(EU{u~t}, R)
(E,RU{s —t})
(E,RU{s — u})
(E,RU{s —t})
(EU{v =~ t},R)

SIMPLIFY:

COMPOSE:

COLLAPSE:

35

Correctness of
Completion

If executions eventually consider all critical
pairs (are fair) and can orient every identity
(is non=failing), completion succeeds.

Theorem: a non-failing, fair execution with
identities E yields a convergent, equivalent
rewriting system R, which can be used to
solve the word problem for E.

36

Completion and CGE;

1L #3495 B9 gyt e A (90 s) 2 2 5 e (2)

flexy) = flz)* fly) gl@xy) =glx)xg(y) [flz)*g(y) = g(y) * f(z)

® Recall: completion doesn’t work with the
two commuting endomorphisms
(CGE,) theory.

® Doesn'’t fail (technically) because it never
starts.

® How to orient identities? VWhat reduction
order to use!

37

The Reduction Order
Requirement

® Completion requires the user to provide a
compatible reduction order.

® Can’t find one.We've looked.

® Even if we found one, we couldn’t specify it
— no orders supported by tools (e.g.
Waldmeister) are compatible.

® Without an order, completion is useless.

38

Issues with Completion

1. Compatible orders hard for the user to find
and specify.

. g . 4
- 2. Implementations only implementafew
o e s e e B e, B e el e s s A i LS S o Rt et S AR R D e

AT

The Orient Rule

(EU{s =~ t},R)

ORIENT: (E,RU{s — t})

® Problems manifested in the orient rule -
only place the presupposed order is
mentioned.

e Completion would work for more theories
if the system provided the order instead of

the user.

40

A New Orient Rule

e Idea: what if we use a termination checker
instead?

e New orient precondition: require that

adding s — t preserves termination of the
rewriting system.

® |mplies the existence of a compatible
reduction order.

Correctness of the New
Orient Rule

® Different from standard completion in an
Important way —

® Termination implies the existence of a
compatible order; but the order could be
different each time the orient rule is
applied.

® |ike performing completion with multiple
orders.

Completion with
Multiple Orders

® A version of completion with multiple
orders was used for years (without
correctness proof).

® Changing orders is a useful feature.

® |f an unorientable identity is encountered,
just find another compatible order and keep

going.

43

Multiple Orders Not
Correct

® Correctness an open problem for years.

e gy R I L T e L, 1 » T ¥
B sl -, PR
I ._,,_rs e oF i r -l- -‘"u"‘ A lgts - L} N i

an = T, s l_"._l-""ll-." o S o ol "
& ¢ -I:. [& e L L3y :|_-_-'_—| _.l_'l a
T e P © b ey S AN s,

A Correct Special Case

® But Sattler-Klein also proved that one kind
- of multi-ordered completion is correct:

] ! o) 35
Ay W-?’,“ i : S s ﬁ. .'-".N e
Bt eealigy g ') Rl [¥ e B = Wpekucra L E

Compose and Collapse

(E,RU{s — t})

COMPOSE:;: E,RU{s — u}) ift g u

(
(E,RU{s —t})
(FU{v=t},R) if s g v

COLLAPSE:

® Why!? These are the only rules that change
or remove rules from the current rewriting
system.

® Without these, the intermediate rewrite
systems form an increasing chain.

® The final order could have been used from
the start without failure.

46

Constraint System

® Could use new orient rule without compose
and collapse, but they’re good for
performance.

® |[nstead: check termination of a constraint

rewriting system not affected by compose
and collapse.

® | emma: Termination of constraint system
implies termination of rewriting system and
existence of increasing chain of reduction
orders.

47

Revised Completion

CETORTs =R @)
ORIENT: (E,RU{s—t},CU{s—t}) if CU{s — t} terminates
8, 15, ©)
DEDUCE: (EUu{s=t},R,C) if s—pu—pgt
(Eu{s~s},R,C)
DELETE: (E,R,C)
Eu{s=t},R,C)

(
(EU{u=t},R,C)
(E,RU{s —t},C)
(E,RU{s — u},(C)
(E,RU{s — t},C)
(Eu{v=t} R,C)

SIMPLIFY:

COMPOSE:

COLLAPSE:

e Key differences: constraint system C and
termination predicate in orient precondition.

48

Completion Search

® What if a if a rule can be oriented two
different ways?

® Just try both. Search for a correct
completion.

® (Search avoids pesky infinite executions
mentioned earlier.)

® Breadth-first search guarantees that we will
eventually find a completion.

49

Revised Completion

Revised method is correct.
Order is discovered, not provided.

With perfect termination-checking ability,
the method completes any theory
compatible with some reduction order.

With real termination-checking program
that decides a class of orders O, then revised
method completes any theory compatible
with an order in O.

50

Slothrop

® |Implementation of revised procedure:
Slothrop.

7000-line AP EO S AN s i i S i s i

Completion of CGE;

® Slothrop completes a variety of theories
(e.g., groups and other algebraic structures).

® Completed CGE; — first ever automatic
completion!

(zxy)* 2z — xx(y*2)
g — L

1

o g s il

zx (7 xy) >y

el (zxy) >y

1 1

(xy) ! =y
lxx —x
rxl —>zx
11 —1

()i =

Performance

® Time: Im to find G completion, 2m for GE|,
|.5h for CGE,.

W Il-:, =4
Mabiat -b" e e "*
R e A SN T A /| y

.......

r z ot et Bl e e il B v Kty . Pt it o P
o T e il P el P ke o
) 1 o, YurR . T 4 e o o, B — s] Lol T ey - U i A T
o AR S 0 g o 2 (o G T e S e Y B e e e N g e
Sl T SR B MR L e T Sl B 2 (4 "

AProVE is Fast

Slothrop

Efficiency is the only limitation of technique.

Works well on small theories, but is slow on
large theories.

Improved termination checking will help,
better search heuristics will help more.

Open question: when is a partial
completion nearly a completion?

55

Conclusion

® [hanks to:

4 '. . _-,_:_"- Pl A ..'_.. g @
PO A L | 3
iy i . g o

a

n Stu

"

.ﬁpl_& _- J ’;.‘l:.__:'_ ‘:1_.-5.:."_. :‘ N '.":_-' T o |'-._ _._,' e e L i .ﬁ: ‘;“ ~ .F" ._. R 'ﬂ s

.f"

Conclusion

