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Conflict Clauses and Validating Clauses

Small conflict clauses are often important for modern SAT and SMT
tool performance: some A′ ⊆ A such that

A′ ⇒ (ϕ ⇔ F)

When checking validity, called validating clauses: some A′ ⊆ A such
that

A′ ⇒ (ϕ ⇔ T)
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Essential Operation of an SMT Tool

Tools like CVC Lite proceed as follows:
1 pick an atom a from the goal ϕ to split on
2 decide on its value, e.g. a ⇔ T
3 simplify goal based on this decision:

ϕ
a⇔T
99K ϕ′

4 if ϕ′ = F: halt,
if ϕ′ = T: record a validating clause and backtrack,
else: goto step 1.
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Example of Splitting and Simplification

Example of splitting and simplification of ϕ := (a ∨ b) ∧ c:

(a ∨ b) ∧ c
a⇔F
99K b ∧ c

b⇔T
99K c

c⇔T
99K T

Assignment with domain {a, b, c} is a validating clause
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Example of Splitting and Simplification (cont.)

But, assignment with domain {b, c} is also a validating clause:

(a ∨ b) ∧ c
b⇔T
99K c

c⇔T
99K T

Decision a ⇔ F is redundant
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Proofs of Propositional Simplification

SMT tools such as CVC Lite generate proofs of simplification

Proofs correspond to step-by-step simplification of the goal to T

Main observation: these proofs can be transformed after
generation to find small validating clauses
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Rewriting Proofs of Simplification

Given a goal ϕ and proof of ϕ ⇔ T, reduce the proof with a term
rewriting system (TRS) to one using fewer decisions

Proof p of simplification

(a ∨ b) ∧ c
a⇔F
99K b ∧ c

b⇔T
99K c

c⇔T
99K T

... is rewritten to proof p′ of simplification

(a ∨ b) ∧ c
b⇔T
99K c

c⇔T
99K T
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Algebraic Proof Mining

Proofs viewed as first-order terms

Sound equational theory between proofs is defined

Information extracted from algebraically equivalent proof

Here:

Equations are completed to a convergent TRS

Proofs are rewritten, then information extracted

More sophisticated mining techniques are future work
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Propositional Equivalence Formulas

Goal formulas:
S ::= A | (S ∨ S) | (S ∧ S) | ¬S

Boolean-valued equivalence formulas:

E ::= S ⇔ S | S ⇔ V

A the set of propositional variables, V = {T , F}.
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First-order Proof Terms

Equivalence proofs:

P ::= U | Refl | Trans(P,P) | NotFalse | NotTrue |
OrTrue1 | OrTrue2 | OrFalse1 | OrFalse2 |
CongrNot(P) | CongrOr1(P) | CongrOr2(P)

U a set of atomic proofs (corresponding to decisions)
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Meaning of the Proof Terms

Define a binary relation ` between formulas and proofs:
Refl ` c ⇔ c

Trans(p1, p2) ` c ⇔ c′′ if p1 ` c ⇔ c′, p2 ` c′ ⇔ c′′

NotTrue ` ¬T ⇔ F
NotFalse ` ¬F ⇔ T
OrTrue1 ` T ∨ c ⇔ T
OrTrue2 ` c ∨ T ⇔ T

OrFalse1 ` F ∨ c ⇔ c
OrFalse2 ` c ∨ F ⇔ c

CongrOr1(p1) ` c ∨ b ⇔ c′ ∨ b if p1 ` c ⇔ c′

CongrOr2(p1) ` c ∨ b ⇔ c ∨ b′ if p1 ` b ⇔ b′

CongrNot(p1) ` ¬c ⇔ ¬c′ if p1 ` c ⇔ c′
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An Equational Theory for Proof Reduction

Basic reduction steps are oriented rewrite rules on the proof terms

Rules transform proofs of simplification into canonical form with fewer
unnecessary subproofs, decisions

Derivations on the same subformula gathered so large subproofs are
dropped by “cut-off” rules
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Basic Rewrite Rules
Right-Assoc
Trans(Trans(x1, x2), x3) → Trans(x1, Trans(x2, x3))

Trans-Refl
Trans(Refl, x1) → x1

Trans(x1, Refl) → x1

Congr-Refl
CongrOr1(Refl) → Refl
CongrOr2(Refl) → Refl
CongrNot(Refl) → Refl

Cut-Off
Trans(CongrOr1(x1), OrTrue2) → OrTrue2
Trans(CongrOr2(x1), OrTrue1) → OrTrue1

Congr-Drop
Trans(CongrOr2(x1), OrFalse1) → Trans(OrFalse1, x1)
Trans(CongrOr1(x1), OrFalse2) → Trans(OrFalse2, x1)

Congr-Pull
Trans(Trans(CongrOr1(x1), CongrOr2(x2)), Trans(CongrOr1(x3), CongrOr2(x4)))

→ Trans(CongrOr1(Trans(x1, x3)), CongrOr2(Trans(x2, x4)))
Trans(CongrNot(x1), CongrNot(x2)) → CongrNot(Trans(x1, x2))
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Soundness of the TRS

A single proof proves multiple theorems

Write p1
∗→ p2 to denote any number of rewrite steps in the completed

TRS.

Theorem (Soundness)

For all proofs p1, p2, if p1
∗→ p2 then p2 is “more general” than p1.
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Proof Reduction Example

Rewrite rule in completed TRS:
Trans(CongrOr1(x1), Trans(CongrOr2(x2), OrTrue2)) → Trans(CongrOr2(x2), OrTrue2)

(p1)

a ⇔ a′

a ∨ b ⇔ a′ ∨ b
CongrOr1

(p2)

b ⇔ T
a′ ∨ b ⇔ a′ ∨ T

CongrOr2
a′ ∨ T ⇔ T

OrTrue2

a′ ∨ b ⇔ T
Trans

a ∨ b ⇔ T Trans

↓

(p2)

b ⇔ T
a ∨ b ⇔ a ∨ T

CongrOr2
a ∨ T ⇔ T OrTrue2

a ∨ b ⇔ T Trans
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Canonical Form of Reduced Proofs

TRS is convergent, but different proofs of a theorem don’t always have
the same canonical form

(p1)

a ⇔ T
a ∨ b ⇔ T ∨ b

CongrOr1

(p2)

b ⇔ T
T ∨ b ⇔ T ∨ T

CongrOr2
T ∨ T ⇔ T OrTrue2

T ∨ b ⇔ T Trans

a ∨ b ⇔ T Trans

Only need one of p1 or p2, but which one?
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Conclusion

We have described a possible technique for finding small
validating clauses

We use proof mining: proofs are viewed as first-order terms and
reduced by a TRS

Of potential use to SMT tools that rely on clausal form to find small
validating clauses

Validating clauses are not of optimal size but decisions that are
clearly unnecessary
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