
Mining Propositional Simplification Proofs for
Small Validating Clauses

Ian Wehrman Aaron Stump

Dept. of Computer Science and Engineering
Washington University in Saint Louis

http://cl.cse.wustl.edu/

Third Workshop on Pragmatics of Decision Procedures in
Automated Reasoning

Wehrman, Stump (Washington Univ.) Mining Proofs for Small Validating Clauses PDPAR 2005 1 / 17

http://cl.cse.wustl.edu/

Conflict Clauses and Validating Clauses

Small conflict clauses are often important for modern SAT and SMT
tool performance: some A′ ⊆ A such that

A′ ⇒ (ϕ ⇔ F)

When checking validity, called validating clauses: some A′ ⊆ A such
that

A′ ⇒ (ϕ ⇔ T)

Wehrman, Stump (Washington Univ.) Mining Proofs for Small Validating Clauses PDPAR 2005 2 / 17

Essential Operation of an SMT Tool

Tools like CVC Lite proceed as follows:
1 pick an atom a from the goal ϕ to split on
2 decide on its value, e.g. a ⇔ T
3 simplify goal based on this decision:

ϕ
a⇔T
99K ϕ′

4 if ϕ′ = F: halt,
if ϕ′ = T: record a validating clause and backtrack,
else: goto step 1.

Wehrman, Stump (Washington Univ.) Mining Proofs for Small Validating Clauses PDPAR 2005 3 / 17

Example of Splitting and Simplification

Example of splitting and simplification of ϕ := (a ∨ b) ∧ c:

(a ∨ b) ∧ c
a⇔F
99K b ∧ c

b⇔T
99K c

c⇔T
99K T

Assignment with domain {a, b, c} is a validating clause

Wehrman, Stump (Washington Univ.) Mining Proofs for Small Validating Clauses PDPAR 2005 4 / 17

Example of Splitting and Simplification (cont.)

But, assignment with domain {b, c} is also a validating clause:

(a ∨ b) ∧ c
b⇔T
99K c

c⇔T
99K T

Decision a ⇔ F is redundant

Wehrman, Stump (Washington Univ.) Mining Proofs for Small Validating Clauses PDPAR 2005 5 / 17

Proofs of Propositional Simplification

SMT tools such as CVC Lite generate proofs of simplification

Proofs correspond to step-by-step simplification of the goal to T

Main observation: these proofs can be transformed after
generation to find small validating clauses

Wehrman, Stump (Washington Univ.) Mining Proofs for Small Validating Clauses PDPAR 2005 6 / 17

Rewriting Proofs of Simplification

Given a goal ϕ and proof of ϕ ⇔ T, reduce the proof with a term
rewriting system (TRS) to one using fewer decisions

Proof p of simplification

(a ∨ b) ∧ c
a⇔F
99K b ∧ c

b⇔T
99K c

c⇔T
99K T

... is rewritten to proof p′ of simplification

(a ∨ b) ∧ c
b⇔T
99K c

c⇔T
99K T

Wehrman, Stump (Washington Univ.) Mining Proofs for Small Validating Clauses PDPAR 2005 7 / 17

Algebraic Proof Mining

Proofs viewed as first-order terms

Sound equational theory between proofs is defined

Information extracted from algebraically equivalent proof

Here:

Equations are completed to a convergent TRS

Proofs are rewritten, then information extracted

More sophisticated mining techniques are future work

Wehrman, Stump (Washington Univ.) Mining Proofs for Small Validating Clauses PDPAR 2005 8 / 17

Propositional Equivalence Formulas

Goal formulas:
S ::= A | (S ∨ S) | (S ∧ S) | ¬S

Boolean-valued equivalence formulas:

E ::= S ⇔ S | S ⇔ V

A the set of propositional variables, V = {T , F}.

Wehrman, Stump (Washington Univ.) Mining Proofs for Small Validating Clauses PDPAR 2005 9 / 17

First-order Proof Terms

Equivalence proofs:

P ::= U | Refl | Trans(P,P) | NotFalse | NotTrue |
OrTrue1 | OrTrue2 | OrFalse1 | OrFalse2 |
CongrNot(P) | CongrOr1(P) | CongrOr2(P)

U a set of atomic proofs (corresponding to decisions)

Wehrman, Stump (Washington Univ.) Mining Proofs for Small Validating Clauses PDPAR 2005 10 / 17

Meaning of the Proof Terms

Define a binary relation ` between formulas and proofs:
Refl ` c ⇔ c

Trans(p1, p2) ` c ⇔ c′′ if p1 ` c ⇔ c′, p2 ` c′ ⇔ c′′

NotTrue ` ¬T ⇔ F
NotFalse ` ¬F ⇔ T
OrTrue1 ` T ∨ c ⇔ T
OrTrue2 ` c ∨ T ⇔ T

OrFalse1 ` F ∨ c ⇔ c
OrFalse2 ` c ∨ F ⇔ c

CongrOr1(p1) ` c ∨ b ⇔ c′ ∨ b if p1 ` c ⇔ c′

CongrOr2(p1) ` c ∨ b ⇔ c ∨ b′ if p1 ` b ⇔ b′

CongrNot(p1) ` ¬c ⇔ ¬c′ if p1 ` c ⇔ c′

Wehrman, Stump (Washington Univ.) Mining Proofs for Small Validating Clauses PDPAR 2005 11 / 17

An Equational Theory for Proof Reduction

Basic reduction steps are oriented rewrite rules on the proof terms

Rules transform proofs of simplification into canonical form with fewer
unnecessary subproofs, decisions

Derivations on the same subformula gathered so large subproofs are
dropped by “cut-off” rules

Wehrman, Stump (Washington Univ.) Mining Proofs for Small Validating Clauses PDPAR 2005 12 / 17

Basic Rewrite Rules
Right-Assoc
Trans(Trans(x1, x2), x3) → Trans(x1, Trans(x2, x3))

Trans-Refl
Trans(Refl, x1) → x1

Trans(x1, Refl) → x1

Congr-Refl
CongrOr1(Refl) → Refl
CongrOr2(Refl) → Refl
CongrNot(Refl) → Refl

Cut-Off
Trans(CongrOr1(x1), OrTrue2) → OrTrue2
Trans(CongrOr2(x1), OrTrue1) → OrTrue1

Congr-Drop
Trans(CongrOr2(x1), OrFalse1) → Trans(OrFalse1, x1)
Trans(CongrOr1(x1), OrFalse2) → Trans(OrFalse2, x1)

Congr-Pull
Trans(Trans(CongrOr1(x1), CongrOr2(x2)), Trans(CongrOr1(x3), CongrOr2(x4)))

→ Trans(CongrOr1(Trans(x1, x3)), CongrOr2(Trans(x2, x4)))
Trans(CongrNot(x1), CongrNot(x2)) → CongrNot(Trans(x1, x2))

Wehrman, Stump (Washington Univ.) Mining Proofs for Small Validating Clauses PDPAR 2005 13 / 17

Soundness of the TRS

A single proof proves multiple theorems

Write p1
∗→ p2 to denote any number of rewrite steps in the completed

TRS.

Theorem (Soundness)

For all proofs p1, p2, if p1
∗→ p2 then p2 is “more general” than p1.

Wehrman, Stump (Washington Univ.) Mining Proofs for Small Validating Clauses PDPAR 2005 14 / 17

Proof Reduction Example

Rewrite rule in completed TRS:
Trans(CongrOr1(x1), Trans(CongrOr2(x2), OrTrue2)) → Trans(CongrOr2(x2), OrTrue2)

(p1)

a ⇔ a′

a ∨ b ⇔ a′ ∨ b
CongrOr1

(p2)

b ⇔ T
a′ ∨ b ⇔ a′ ∨ T

CongrOr2
a′ ∨ T ⇔ T

OrTrue2

a′ ∨ b ⇔ T
Trans

a ∨ b ⇔ T Trans

↓

(p2)

b ⇔ T
a ∨ b ⇔ a ∨ T

CongrOr2
a ∨ T ⇔ T OrTrue2

a ∨ b ⇔ T Trans

Wehrman, Stump (Washington Univ.) Mining Proofs for Small Validating Clauses PDPAR 2005 15 / 17

Canonical Form of Reduced Proofs

TRS is convergent, but different proofs of a theorem don’t always have
the same canonical form

(p1)

a ⇔ T
a ∨ b ⇔ T ∨ b

CongrOr1

(p2)

b ⇔ T
T ∨ b ⇔ T ∨ T

CongrOr2
T ∨ T ⇔ T OrTrue2

T ∨ b ⇔ T Trans

a ∨ b ⇔ T Trans

Only need one of p1 or p2, but which one?

Wehrman, Stump (Washington Univ.) Mining Proofs for Small Validating Clauses PDPAR 2005 16 / 17

Conclusion

We have described a possible technique for finding small
validating clauses

We use proof mining: proofs are viewed as first-order terms and
reduced by a TRS

Of potential use to SMT tools that rely on clausal form to find small
validating clauses

Validating clauses are not of optimal size but decisions that are
clearly unnecessary

Wehrman, Stump (Washington Univ.) Mining Proofs for Small Validating Clauses PDPAR 2005 17 / 17

	Introduction
	Conflict clauses, validating clauses and SAT performance
	Propositional Simplification Proofs
	Algebraic Proof Transformation and Mining

	Propositional Equivalence Formulas and Proofs
	Equivalence Formulas and Proofs
	Canonical Form

	Conclusion

