
BYZANTINE FAULT TOLERANT EXECUTION OF LONG-RUNNING
DISTRIBUTED APPLICATIONS

Sajeeva L. Pallemulle1, Ian Wehrman, Kenneth J. Goldman1

Department of Computer Science and Engineering
Washington University in St. Louis, St. Louis, MO 63130 USA

{sajeeva, iwehrman, kjg}@cse.wustl.edu

ABSTRACT
Long-running distributed applications that automate criti-
cal decision processes require Byzantine fault tolerance to
ensure progress in spite of arbitrary failures. Existing repli-
cation protocols for data servers guarantee that externally
requested operations execute correctly even if a bounded
number of replicas fail arbitrarily. However, since these
protocols only support passive state machine replication,
they are insufficient to support continued correct execution
of autonomous long-running distributed applications.

Building on the Castro and Liskov Byzantine Fault
Tolerance protocol for replicated state machines (CLBFT),
we present a practical algorithm for Byzantine fault-
tolerant execution of autonomous distributed applications.
The algorithm supports replicated clients that actively ex-
ecute application logic by issuing operation requests on
replicated data servers as well as other replicated clients.
Our work facilitates dynamic upgrades to replica groups,
supports both synchronous and asynchronous operation re-
quests, and provides fault isolation between replica groups
with respect to both correctness and performance. The
algorithm scales well to large replica groups with only
twice the latency and message complexity as compared to
CLBFT, which supports only unreplicated clients.

KEY WORDS
Fault tolerant systems, Byzantine agreement, autonomous
distributed applications

1 Introduction
Long-running distributed applications that automate criti-
cal decision processes (e.g. automated stock trading, en-
vironmental controls, and missile defense) must continue
to make progress in the presence of arbitrary (Byzantine)
failures. Recent advances in distributed systems research
have resulted in practical algorithms [1, 2, 3] for construct-
ing replicated data servers that continue to operate correctly
in the presence of a bounded number of Byzantine fail-
ures. These data servers are passive deterministic state ma-
chines that execute operations only in response to external
requests from unreplicated clients, which are susceptible to
arbitrary failures clearly not covered by the replication pro-
tocol. While systems based on these algorithms [4, 5] pro-
vide high availability and data integrity, such systems do

1Supported in part by National Science Foundation grant 0305954.

not guarantee continued correct execution of applications
that access those systems. While replicated state machines
may be adequate for short-term applications (e.g. end user
lookups), they are not sufficient for critical long-running
autonomous applications where the active computation as
well as data access must be fault tolerant.

This paper presents an algorithm for Byzantine fault-
tolerant (BFT) execution of autonomous distributed appli-
cations. Our algorithm supports client replica groups that
interact with both replicated data servers and other client
replica groups. The algorithm provides fault isolation be-
tween the replica groups, ensuring that evencompromised
replica groups (with more faulty replicas than the tolerance
level) cannot disrupt the operation of correct replica groups.

1.1 Problem Description

The problem of ensuring Byzantine fault tolerant execu-
tion of application logic on a client replica group is surpris-
ingly difficult and not easily solved with simple extensions
to CLBFT. To illustrate the complexity of the problem, we
consider some simple solutions and their limitations.

The most simple approach would have each replica
in the client group act as a separate client to the replicated
server. Each client replica would request the operation in-
dependently, and the group would vote on the final result.
However, this approach is inefficient and can only work
for idempotent operations since each operation is executed
more than once. In addition, a faulty client replica could
issue arbitrary operation requests to the server.

One might consider using a primary client replica to
act as a client of the server group on behalf of the client
group. This would support mutating operations, but the
client primary could be faulty and issue invalid requests.
In addition, a client replica would not be able to distin-
guish between its primary being faulty and the server not
responding. This would allow a compromised server group
to force a potentially expensive configuration change at the
client to change the client primary.

A further refinement would be to have each client
replica directly send the request to the server. Each server
replica would wait for a quorum of requests before accept-
ing it as a valid request. After performing the request,
the server replicas would respond to all the client replicas
directly. Each client replica would wait for a quorum of
server replies before accepting the result. However, a com-



promised server group could send quorums for different re-
sult values to different client replicas and cause the client
replica states to diverge. Furthermore, utilizing a quadratic
multicast for server replies would be highly inefficient.

One way to preserve the consistency of replica state in
the face of a compromised server group is to have the client
replica group vote on the result. However, if the server only
responds to a subset of client replicas or if the server sends
quorums for different result values to subsets of client repli-
cas, the client replica group would deadlock on this vote.
Without a mechanism to allow all non-faulty client replicas
to abort the vote, this deadlock would not be resolved.

To avoid the inefficiency of quadratic multicast, as-
signing a designated responder at the server would be de-
sirable, with the multicast approach used as a backup strat-
egy only if the responder fails. However, a mechanism to
change the designated responder would be needed, and it
is important to ensure that faulty nodes in a correct client
group cannot force unnecessary multicasts.

1.2 Background

Our algorithm builds upon CLBFT, a practical Byzantine
agreement protocol for replicated deterministic state ma-
chines. The CLBFT algorithm uses3f + 1 replicas, where
at mostf can be faulty. Messages can be delayed, provided
that the length of message delays does not increase faster
than time (a weak assumption). Cryptographic techniques
[6, 7] are used to verify authenticity of messages, and mes-
sage digests [8] are used to reduce message size. The
CLBFT algorithm for a mutating operation works roughly
as follows (read operations require less communication).
A client sends its request to a designatedprimary replica,
which appends a sequence number and forwards it to the
replicas in apre-preparemessage. Since the primary may
be faulty, the replicas multicast a correspondingprepare
message to each other, to ensure that all were given the
same request and sequence number. Upon receiving2f
prepare messages matching the pre-prepare message it re-
ceived from the primary, a replica multicasts acommitmes-
sage to all the replicas. When it has matching commit mes-
sages from2f + 1 replicas (possibly including itself), a
replica executes the requested operation and sends the re-
sult to the client. Upon receivingf+1 matching replies, the
client accepts that return value. If a client times out waiting
for a reply (perhaps due to a faulty primary), it multicasts
its original request to all the replicas. The replica starts a
progress timer if the operation has not yet executed. Also, if
the replica has not yet received a preprepare, it forwards the
request to the primary. When the operation completes, it
replies to the client with the return value. If progress under
the current primary is unsatisfactory, the replicas change
the primary in aview changeoperation. Since view changes
are expensive, progress timers adapt to prevent frequent
view changes.

1.3 Contributions

We present a practical algorithm for Byzantine fault-
tolerant execution of long-running autonomous distributed

applications in which replicated clients invoke operations
on replicated servers and other replicated clients. The al-
gorithm has the following desirable properties:

• Client replica groupc continues to execute applica-
tion logic correctly provided that the number of client
replicas is at least3fc + 1, wherefc is the maximum
number of (possibly Byzantine) faults to be tolerated
by the client replica group.

• External operation requests can be executed on the
client replica group. This can be used to facilitate
interaction between client replica groups as well as
to perform fault tolerant atomic software upgrades of
long-running applications. [9]

• The algorithm uses a designated responder in the
server replica group to reduce the number of reply
messages sent from the server to the client.

• Faults are isolated between replica groups with re-
spect to correctness. Servers continue to execute cor-
rectly even if a client group becomes compromised
with more thanfc client replicas becoming faulty.
Similarly, even if server groups become compromised,
non-faulty clients continue to agree on their execution
and make progress to the extent possible without in-
teraction with compromised servers.

• Faults are isolated with respect to performance (with
modifications to CLBFT stated in [10]). Even if the
bounds on the number of faulty client nodes are ex-
ceeded, compromised client groups cannot force a
view change at a server. Similarly, compromised
server groups cannot force a view change at clients.
Furthermore, the algorithm uses an inexpensive proto-
col at the client replica group to select the designated
responder without incurring a view change operation
at either replica group.

• The algorithm supports both synchronous and asyn-
chronous requests, masking operation latency.

Section 2 discusses our approach in the context of re-
lated work. In Section 3, we present a high-level overview
of our algorithm. Section 4 describes our algorithm in more
detail. Section 5 provides analysis of the time and message
complexity of the algorithm. We conclude in Section 6.

2 Related Work
Our work is concerned with interaction between Byzantine
fault tolerant replica groups. Prior work addresses aspects
of the problem but does not provide a complete practical so-
lution to the problem of replicated clients that access repli-
cated servers and other replicated clients.

Thema [11] provides a server wrapper for creating
replicated BFT Web Services and an external service wrap-
per that allows a replicated Web Service to access an exter-
nal unreplicated Web Service safely. However, the current
implementation does not vote on the result value of external
operations and does not have a mechanism to abort an ex-
ternal operation request as a group. These limitations could
lead to inconsistent replica state. Furthermore, Thema does



not allow a replicated Web Service to access another repli-
cated Web Service. Hence, Thema cannot be used in sys-
tems where replica groups communicate with each other.

In the Byzantine fault-tolerant Domain Name Service
(BFT-DNS) [12], each level in the BFT-DNS lookup sys-
tem is replicated, with replicated clients invoking read op-
erations on replicated servers. The primary at one level
makes a call to the next level on behalf of its replicas. The
replicas in the next level send replies that are collected by
the lower-level primary and forwarded to its peer replicas.
A compromised replica group can force a view change on
the lower level by not replying to calls from the lower-level,
and if the lower-level primary is also faulty, it can collude
with the server group to send quorums with different results
to different replicas, leading to inconsistent replica state.

Fry and Reiter [13] present a quorum replication
mechanism that allows replicated objects to invoke opera-
tions on other potentially replicated objects. Client objects
invoke operations on a selected quorum of server objects.
Clients refer to server objects usinghandles, which can be
used in calls to other objects. Certificates in the handle
ensure that a quorum of handles is required to invoke an
operation. However, the exponential growth in the size of
the certificates with each nesting step drives up the message
complexity and the cost of certificate verification.

Immune [14] supports replicated clients that invoke
operations on replicated servers. It uses a totally ordered
multicast mechanism based on SecureRing [15] to en-
sure consistently ordered one-time message delivery across
replicas. This mechanism does not scale well since the
number of rounds of communication is proportional to the
replica group size. Our algorithm uses a constant number
of rounds of communication. Therefore, latency does not
increase with the size of the replica group.

3 Overview

Our algorithm supports any number of replicated clients
that access any number of replicated servers or other repli-
cated clients. However, for ease of exposition, we describe
the algorithm in terms of a single replicated servers, com-
posed ofm = 3fs + 1 replicass1, . . . , sm, and a sin-
gle replicated clientc composed ofn = 3fc + 1 replicas
c1, . . . , cn, wherefs andfc are specified upper bounds on
the number of faulty replicas to be tolerated at the server
and client, respectively. All assumptions made in the sys-
tem model of CLBFT [1] apply here, including standard
cryptographic assumptions and a weak synchrony assump-
tion that message delays do not grow faster than time.

We use a modular architecture to manage the com-
plexity of the algorithm and simplify reasoning about its
correctness. On the server side, our algorithm “wraps”
CLBFT replicas, making it appear to them as if clients
are not replicated. Each client replicaci is composed of
anactive clientreplica and aclient store(or simplystore)
replica. The active client has anoracle, a black box that
captures the logic of the application. The store acts as a
passive data server that carries out agreement operations

on behalf of the active client. Each active client replica and
its corresponding store replica reside on the same host.

The oracle models a deterministic application that re-
quests operations on external servers (including the client
stores of other clients) and processes their replies. The re-
quests may be synchronous or asynchronous. Since the or-
acle is deterministic, we are guaranteed that if two non-
faulty oracles have experienced the same sequence of re-
quests and replies, then the next request issued by both ora-
cles will be the same. The reply to an operation request may
arrive from the server at different times at different client
replica, so a mechanism is needed to ensure that replies
are consumed in the same order by all client replicas. Fur-
thermore, since some replicas may be faulty and the server
may be compromised, it is necessary for the client replicas
to agree on the reply value. Both of these needs are met
by the client store replica group, which agrees on the re-
ply to each server operation and places the result in a FIFO
queue (in the execution order at the store) until it is con-
sumed by the oracle in a blocking operation. Since all ora-
cles issue the same request sequence (including requests to
dequeue results from the FIFO queue), all oracles of non-
faulty replicas receive the same results at the same points
in their executions.

The algorithm is designed to minimize the number of
messages between clients and servers. Consequently, we
wish to avoid a quadratic reply multicast from server repli-
cas to client replicas. To this end, the client group names
a server replica as thedesignated responder(or simply,re-
sponder) for each request. The responder forwards the re-
ply from the server to all the client replicas. The responder
need not be the server primary, and therefore a client group
that deems the responder unsatisfactory can select a new
responder without forcing a view change at the server.

As an overview of the algorithm, we trace the execu-
tion of a request issued by the application. We begin with
an overview of normal operation. Section 4 has a detailed
discussion, including mechanisms for fault handling.

3.1 Normal Operation

As seen in Figure 1, when the application executing on
an active client replica requests an operation on a remote
server, a request (with the identity of the responder for that
server) is sent to the primary of the server group. The server
primary waits for at leastfc +1 matching requests and then
starts the CLBFT protocol to execute the operation. Instead
of multicasting replies back to the3fc + 1 client replicas,
the server replicas forward their replies to the responder.
The responder waits for at leastfs + 1 matching replies
and then sends to each of the active client replicas a single
reply message and a bundle offs+1 reply digest signatures
as proof that the server group agreed on the reply.

When an active client replica receives a reply, it ver-
ifies the validity of the signature bundle and forwards the
result to the client store, which uses CLBFT to agree upon
the reply. In the execute step of the CLBFT algorithm at the
store, each replica places its reply in a FIFOresult queue



for use by its corresponding active client replica. When the
application deterministically decides to check for a reply
to a previous request, it reads the first item from the result
queue, blocking if necessary until a result is available.

Since they reside on the same host, an active client
replica and its corresponding store replica fail together.
Therefore, the store does not multicast reply values back to
the client replicas. Instead, each active client replica trusts
the reply in the result queue that was provided by its corre-
sponding store replica.

3.2 External Updates to Client State

Because we envision this algorithm being applied to critical
long-running distributed applications, it is important to ac-
commodate online upgrades to application logic on clients
as well as servers. These are accomplished as external op-
erations on the client store, whose results become available
to all oracles at the same point in their execution. Thus,
behavior remains consistent across all non-faulty replicas.
The same mechanism can be used to inform applications of
other events to which they may subscribe.

3.3 Interaction Between Client Replica Groups

Our algorithm reuses the server wrapper at the client store.
Consequently, any given replica group can act as both a
client and a server with some modifications.

External operation requests to a client store can be
used as a means of making requests on the client group as
if it were a server. Each store replica agrees on the oper-
ation and forwards it to the active replica using the FIFO
result queue. Once the application executes the operation,
the active replica forms the result value and sends it back
to the store replica. The store replica constructs a reply to
the original request using the result value and sends it to the
“client” that issued the operation. This model can be used
to support both work-flow packet migration (essentially re-
mote method invocation without return values) and nested
remote method invocations in which the intermediate ac-
tive client makes further invocations in order to compute
the result value to the original request.

3.4 Fault Handling

In the presence of faulty replicas, normal operation may not
proceed to completion. Section 4.2 discusses the mech-
anism used to complete operation requests if normal op-
eration fails. We also present strategies for changing the
server primary and the responder if they are suspected of
being faulty or slow. Finally, we also address the issue of
fault isolation if either the client or server group becomes
compromised.

4 Detailed Algorithm Description
This section describes the algorithm in detail starting in
Section 4.1 with the operation of the protocol in the ab-
sence of faults. Section 4.2 discusses fault handling. A
complete algorithm specification using the I/O automaton
model [16], key lemmas that capture the algorithm, and a
proof sketch are presented in [17].

The system consists of a client groupc, composed
of n = 3fc + 1 replicasc1, . . . , cn, and a server-group
s composed ofm = 3fs + 1 replicass1, . . . , sm. Each
server replicasi is modeled as the composition of aserver
back end(SBEi) component that encapsulates the CLBFT
protocol and aserver front end(SFEi) component that im-
plements our server protocol and wrapsSBEi. Each client
replicacj is composed of an active client replica and a store
replica. The active client replica is composed of a compo-
nent that models the application and encapsulates the or-
acle (APPj) and aclient front end(CFEj) component that
implements our client protocol. We assume that all non-
faulty client replicas begin execution with the same initial
application state. A store replica is simply a composition
of a SFEj and aSBEj component. We refer to a replica
and its identifier interchangeably, and similarly for groups
and group identifiers. We assume a reliable asynchronous
communication channel.

4.1 Normal Operation

We consider the execution of a request from a non-faulty
client groupc to a non-faulty server groups.

4.1.1 Client Send Request

After APPi at client replica i issues a request with
timestampt for operationo to be executed on server group
g, CFEi creates a CLBFT requestr = 〈REQUEST, o, t, c〉σc

wherec is the replica group ofi. In addition, arequest
bundleb = 〈d, ρ, i〉σi is created, whered is the digest of
the CLBFT requestr andρ is CFEi’s currentdesignated re-
sponderfrom server groupg. CFEi combines the CLBFT
request and the request bundle as anextended request〈r, b〉
and sends it to primaryk of g. CFEi also starts an opera-
tion timer with the tuple〈g, r, b〉 and adds the tuple to set
requests-current i, which is used later to verify the correct-
ness of replies from the server.

4.1.2 Server Execution

When fc + 1 matching requests (with matching CLBFT
bundles from distinct replicas naming the same designated
responder) have been received atSFEk, their bundles are
added to a setrequests-currentk, and the CLBFT request
is added to the setsbe-bufferk of messages to be delivered
to the local back-endSBEk. Once the CLBFT request is
received bySBEk, the CLBFT algorithm starts and eventu-
ally sends a pre-prepare messagep to the other replicas in
the server group. The server wrapper intercepts messagep
containing the CLBFT request and creates anextended pre-
prepare〈p, S〉 with S the set offc+1 signed bundles saved
in requests-currentk for m. These bundles serve as proof
to other server replicas that at least one non-faulty client
replica sent the request. This prevents faulty client replicas
from colluding with a faulty server primary to convince the
server to execute incorrect requests.

When SFEj at server replicaj receives the extended
pre-prepare, the signed bundles inS are verified, and the
bundles are saved inrequests-currentj just as at the pri-
mary. SFEj then forward the CLBFT pre-prepare message



Serv
er 

Rep
lic

a 4

Active Replica of Client Replicas 

send Request to Server primary.

Agreement & Execution

Server Replicas forward 

Response to Designated 

Responder. 

Designated Responder sends 

Reply Bundle to all Client Active 

Replicas.

Active Replicas send Result to 

Store Primary.

Active Replicas learn the result from 

co-located Store Replica at the same 

logical time.

Store Replicas vote on Result

Client Server

Server Replicas run CLBFT and 

execute the Request

Store Replicas run CLBFT to 

vote on the Result value.

Serv
er 

Rep
lic

a 3

Resp
onder R

eplic
a

Serv
er 

Prim
ary

Store R
ep

lic
a 4

Activ
e R

ep
lic

a 4

Store R
ep

lic
a 3

Activ
e R

ep
lic

a 3

Store R
ep

lic
a 2

Activ
e R

ep
lic

a 2

Store Prim
ary

Activ
e R

ep
lic

a 1

Figure 1. Normal (Non-Faulty) Operation

to SBEj . In normal operation, the CLBFT protocol pro-
ceeds unmodified from this point through the prepare and
commit stages. AfterSBEj executes the operation, it gen-
erates a CLBFT reply message to be sent to the client.

SFEj forwards the replym from SBEj to the desig-
nated responder (instead of the client, as in CLBFT) as
an extended reply〈m, 〈j, σj〉〉, consisting of the CLBFT
reply along with a tuple consisting of the signature from
the reply and the replica identifierj. Information saved in
requests-currentj is used to determine the responder.

The replies are received bySFEρ at responderρ and
added to the setreplies-incomingρ. When this set contains
fs + 1 matching extended replies (two extended replies
matchwhen the CLBFT replies in each are identical, the
signatures for each are correct, and the signers are dis-
tinct) for the request for client groupc with timestampt
with resultr, anextended reply forwardconsisting of the
original CLBFT reply and the corresponding set offs + 1
signature–identifier tuples is created and sent to each of the
client replicas. This set serves as proof of correct execution
by the server group to each of the client replicas. Then
extended reply forwards sent by the designated responder
avoid a costly quadratic broadcast.

4.1.3 Client Receive Reply

After the responder sends an extended reply forward
m = 〈r′, S〉 to a client replicai, that replica eventu-
ally receives the reply, verifies the signatures, and adds
the reply–signatures tuples to the setreplies-incomingi.
When at leastfs + 1 matching tuples are present in set
replies-incomingi, which is immediate if the responder is
non-faulty, and a tuplem = 〈g, r, b〉 that corresponds to
the reply is inrequests-current i, the client replica removes

m from the requests-current i, and constructs an extended
requestrµ (using the same timestamp as the reply) that
contains anAPPLY-RESULT operation for the client store
to apply the result. This extended request is then sent to
the client store primarykµ as a regular server operation re-
quest.

This sequence of actions takes place at each non-
faulty client replica, so eventually at leastfc + 1 match-
ing extended requests for anAPPLY-RESULT operation are
sent to the store primary. Assuming that the client group,
and hence client store (i.e., the composition of server front-
end and back-end automata) is not compromised, we expect
to receive a reply from the store that contains an agreed
upon result for the request. This result could either be the
one proposed by client replicai or, in the case of a faulty
server, anABORT message, as described in Section 4.2.3.
CFEi receives the store replyr

′

µ directly from the co-located
store replica instead of via the channel. We make a simple
modification to CLBFT to send replies in execution order.
As the replies are delivered to the client front-end, they
are appended to the end of the queuestore-repliesi, and
the correspondingAPPLY-RESULT request is removed from
requests-current i.

The componentAPPi schedules requests until it re-
quires the result of some request to make further requests.
When it becomes blocked, it signalsCFEi. CFEi dequeues
the head of the reply queue and sends it toAPPi. At this
point, the application updates its state using the new result
and can schedule further requests.

4.2 Fault Handling

Each client replica starts a timer upon sending a request
to a server primary. If the timer expires before a reply is



Algorithm stage Latency (rounds) Message count Total message size
1. Send request to server 1 O(n) O(`n)
2. Server agreement (CLBFT) 4 (3 for reads) O(m2) O(m2 + mn + `m)
3. Responder to client group 1 O(n) O(mn + `n)
4. Forward reply to client store 1 O(n) O(`n)
5. Client store agreement (CLBFT) 3 (local reply) O(n2) O(n2 + `n)
Total 10 (9 for reads) O(m2 + n2) O(m2 + n2 + mn + `m + `n)

Table 1. Message Complexity

received, there are three possible scenarios: (1) the server
primary is faulty and has discarded the client requests, (2)
the designated responder is faulty and did not send the re-
sponse to some or all of the active client replicas, or (3) the
timeout value is too low for current network conditions.

When a client replica times out waiting for a reply,
it resends the request to allm server replicas. A server
replica waits for at leastfc + 1 matching requests (to pre-
vent a faulty client replica from forcing a multicast) and
then determines whether agreement on the requested op-
eration has been started by the primary. If not, the server
replica forwards the request bundle (including thefc + 1
matching requests) to the server primary. It also starts a
view-change timer as defined in CLBFT. If the replica has
executed (or eventually executes) the operation under the
current primary, it multicasts the extended reply message
to all n client replicas.

If the number of faulty server replicas does not ex-
ceedfs, each active client replica eventually receives at
leastfs + 1 correct extended reply messages with match-
ing results. It then creates a new store request to apply the
result, just as in Section 4.1.3.

4.2.1 Unresponsive Designated Responder

We wish to bound the additional traffic that could be caused
by a slow or faulty responder. The designated responder for
a server group need not be the server primary, and changing
the responder does not require a view change at the server.
At any time, a client replica may vote to change the desig-
nated responder for server groupg by sending a request to
the store with operation〈RESPONDER-CHANGE, g〉. If it is
ever the case thatfc + 1 requests to change the responder
are received at the store from distinct client replicas, the
store will process the request to change the responder and
notify all client replicas at the same logical time.

4.2.2 Compromised Client Group

If the number of faulty client replicas exceedsfc, we still
want non-faulty server groups to function correctly. The
SFEautomata only trigger the CLBFT protocol whenfc+1
matching client requests arrive so the case of a faulty client
group reduces to the case of a single faulty client in CLBFT,
and safety is ensured. Information is piggybacked on exist-
ing CLBFT messages, but messages to or from non-faulty
clients are not dropped, so view changes due to a faulty or
slow primary are not hindered. One potential concern is a
faulty client group sending two matching sets of extended
requests that contain identical CLBFT requests but differ-

ent designated responders. A faulty server primary could
collude with the client group and distribute different sets of
signed bundles to different server replicas. In this case, nei-
ther designated responder might receive enough extended
reply forwards to achieve quorum to send the extended re-
ply to the client group. This does not affect correctness
because the client group is compromised to begin with.

4.2.3 Compromised Server Group

A compromised server group, in which the number of
faulty replicas exceedsfs, should not be able to cause di-
verging application state at client replicas or prevent the
client application from making progress. Client replicas
are individually satisfied with a reply from a server after
receivingfs + 1 correct signatures for a particular result,
but a compromised server group could send different re-
sults to different replicas. As a result, the client replicas
may send APPLY-RESULT requests for different result
values to the store. The store will process the requests only
if at leastfc + 1 client replicas request to apply the same
result value. The timestamp used to send the original re-
quest to the server is reused for the APPLY-RESULT re-
quest. It is possible for the client store to form quorums for
the same timestamp and two separate result values. In this
case, the store primary will assign a sequence number to
each request and process it, but as defined by CLBFT, only
one apply result operation will execute at any of the store
replicas, ensuring consistency.

In the CLBFT protocol, an unreplicated client is free
to time out when waiting for a response, handle the excep-
tion, and ignore any future reply to that request. In our case,
the client application is replicated. Since we do not assume
even loosely synchronized clocks, replicas may time out
at different times. We cannot allow client replicas to stop
waiting for a reply solely on the basis of their local timers,
because a delayed reply may arrive after only some replicas
have timed out, causing the behavior of non-faulty active
client replicas to diverge. We handle the problem of faulty
server groups as follows.

After issuing a requestr to a server, a client replica
may time out (or otherwise suspect that the server is faulty)
and wish to stop waiting for a reply tor. Then, the replica
requests that a “suspect faulty” operation be performed on
the client store. If2fc + 1 active client replicas issue such
requests, and if the client store has not yet processed a reply
for r, then the client store will agree to suspect the server
as faulty and inform the active replicas by placing a reply
to the “suspect faulty” operation in the result queue. All



replicas will consume this result at the same point in their
execution, handle the missing reply as dictated by the appli-
cation, and continue to exhibit identical behavior. While all
other store operations can be processed withfc + 1 match-
ing requests, “suspect faulty” operations require2fc + 1 to
ensure that at leastfc + 1 non-faulty replicas had sentr to
the server giving the server a chance to accept the request
and execute the operation.

5 Complexity Analysis

We analyze the latency, message count, and total message
size during normal operation in terms of the client replica
group sizen = 3fc + 1 and server replica group size
m = 3fs + 1. Let ` be the maximum length of operation
requests and replies. We build on CLBFT, which supports
only unreplicated clients and incurs 4 message delays (3
for reads),O(m2) messages andO(m2 + `m) total mes-
sage size. Table 1 shows the analysis for each stage of our
algorithm during normal operation. We assume message
digests and digital signatures are of constant length.

Taking constants into account, our algorithm incurs
approximately twice the number of messages and total
message size as CLBFT. If we assume the replica groups
are the same size and constant length requests and replies,
we have a latency ofO(1), message count ofO(n2), and
total message size ofO(n2).

The checkpoint and recovery mechanism of the
CLBFT algorithm can be leveraged to preserve the addi-
tional state on both client and server sides with no addi-
tional overhead. By synchronizing on the consumption of
the result queue to a particular store operation sequence
number, we can ensure that each checkpoint performed by
the store contains consistent state information for all repli-
cas, including the state of the active client replica.

Several optimizations for reducing message complex-
ity as well as a description of how to linearly bound the
space required at each replica for non-faultyCFE andSFE

replicas are presented elsewhere [17].

6 Conclusion

We have presented a practical algorithm for Byzantine
fault-tolerant execution of long-running autonomous dis-
tributed applications. We support interaction between both
passive and active replica groups while providing a high
degree of fault isolation between replica groups. Our algo-
rithm can be used to build tiered distributed systems where
each tier is replicated. Such tiered systems support fault
tolerant distributed applications that use either workflow
packet migration or nested remote method invocation mod-
els. We also support online upgrades to replica groups by
leveraging the basic operation invocation mechanism.

We are currently implementing a prototype of the al-
gorithm and we plan to investigate the scalability of our al-
gorithm both in terms of replica group size and the number
of replica groups that interact with each other.

References
[1] M. Castro and B. Liskov. Practical Byzantine Fault

Tolerance. InProc. 3rd Symp. on Operating Systems
Design and Implementation, pages 173–186, 1999.

[2] G. R. Goodson, J. J. Wylie, G. R. Ganger, and M. K.
Reiter. Efficient Byzantine-Tolerant Erasure-Coded
Storage. InProc. 5th Intl. Conf. on Dependable Sys-
tems and Networks, pages 135–144, 2004.

[3] D. Malkhi and M. Reiter. Byzantine quorum systems.
In Proc. 29th Symp. on Theory of Computing, pages
569–578, 1997.

[4] A. Adya, W. J. Bolosky, M. Castro, G. Cermak,
R. Chaiken, J. R. Douceur, J. Howell, J. R. Lorch,
M. Theimer, and R P. Wattenhofer. Farsite: Federated,
Available, and Reliable Storage for an Incompletely
Trusted Environment.ACM Operating Systems Re-
view, 36(SI):1–14, 2002.

[5] J. P. Martin, L. Alvisi, and M. Dahlin. Minimal
Byzantine Storage. InProc. 16th Intl. Conf. on Dis-
tributed Computing, pages 311–325, 2002.

[6] W. Diffie and M. E. Hellman. New Directions in
Cryptography. IEEE Transactions on Information
Theory, 22(6):644–654, 1976.

[7] B. Prenel and P. van Oorschot. MDx-MAC and Build-
ing Fast MACs from Hash Functions. InProc. 15th
Conf. on Advances in Cryptology, pages 1–14, 1995.

[8] R. Rivest. RFC 1321: The MD5 Message-Digest Al-
gorithm, 1992.

[9] H. D. Thorvaldsson and K. J. Goldman. Dynamic
Evolution in a Survivable Application Infrastructure.
In Proc. 18th IASTED Intl. Conf. on Paralel and Dis-
tributed Computing and Systems, 2006.

[10] S. L. Pallemulle, H. D. Thorvaldsson, and K. J. Gold-
man. Preserving Performance of Byzantine Fault Tol-
erant Replica Groups in the Presence of Malicious
Clients. Technical Report WUCSE-2006-52, Wash-
ington University, 2006.

[11] M. G. Merideth, A. Iyengar, T. Mikalsen, S. Tai,
I. Rouvellou, and P. Narasimhan. Thema: Byzantine-
Fault-Tolerant Middleware forWeb-Service Applica-
tions. In Proc. 24th Symp. on Reliable Distributed
Systems, pages 131–140, 2005.

[12] S. Ahmed. A Scalable Byzantine Fault Tolerant Se-
cure Domain Name System, 2001. Master’s thesis,
Massachusetts Institute of Technology.

[13] C. Fry and M. Reiter. Nested Objects in a Byzantine
Quorum-Replicated System. InProc. 23rd Intl. Symp.
on Reliable Distributed Systems, pages 79–89, 2004.

[14] P. Narasimhan, K. P. Kihlstrom, L. E. Moser, and
P. M. Melliar-Smith. Providing Support for Surviv-
able CORBA Applications with the Immune System.
In Proc. 19th Intl. Conf. on Distributed Computing
Systems, pages 507–516, 1999.

[15] K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-
Smith. The SecureRing group communication sys-
tem. ACM Transactions on Information and System
Security, 4(4):371–406, 2001.

[16] N. Lynch and M. Tuttle. Introduction to Input/Output
Automata.CWI Quarterly, 2(3):219–246, 1989.

[17] I. Wehrman, S. L. Pallemulle, and K. J. Goldman.
Extending Byzantine Fault Tolerance to Replicated
Clients. Technical Report WUCSE-2006-7, Washing-
ton University, 2006.


