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Abstract. Labelled graphs are used to model control and data flow among events
occurring in the execution of a (possibly concurrent) program. Data flow is a uni-
fying concept that covers both access to memory and communication along chan-
nels; it covers many variations including weakly consistent memory, re-ordered ex-
ecution, and communication channels that are multiplexed, buffered, or otherwise
unreliable. Nevertheless, the laws of Hoare and Jones correctness reasoning remain
valid when interpreted in this general model. The key is use of the same language
and logic for the specification of programs as for description of the behavior of pro-
grams. We make no attempt to lift the level of abstraction above that of the atomic
events involved in program execution.
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1. Introduction

In this paper, we present a trace semantics based on graphs: nodes represent the events
of a program’s execution, and edges represent dependencies among the events. The style
is reminiscent of partially ordered models [12,16], though we do not generally require
properties like transitivity or acyclicity. Concurrency and sequentiality are defined in
Section 2 using variations on separating conjunctions: whereas the conjunction in the
original separation logic partitions addresses in a heap [11,14], the conjunctions here
partition events in a trace. We show graphical models of simple programming primitives
in Section 3, and of more advanced primitives in Section 7. The model has pleasant
algebraic properties, which are shown with surprisingly simple proofs. We present a
number of theorems about the generic model, including the soundness of the laws of
Hoare logic [4] in Section 5 and the Jones rely/guarantee calculus [6] in Section 6. The
paper is liberally illustrated by diagrams.

2. Traces and Separation

A directed graph is a pair of sets (EV ,AR), where EV is a set of nodes and AR is
a set of (directed) arrows linking the nodes. The objects of EV represent occurrences
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of atomic events recorded in a trace of program execution; the objects of AR represent
control or data flows that occur between events. We assume that the sets EV and AR
contain all possible events in the execution of a program.

A labelled graph also has a labelling function on its events and arrows. The theorems
in this paper only make use of event labels, but our examples also describe labels on
arrows. We write label(e) = a to mean that a is the atomic action of the programming
language (e.g., x := x+ 12) whose execution is recorded as e.

A trace is a subset of EV that records the execution of a component of the program.
We will identify each command of our programming language with the set of traces of all
its possible executions, in any possible environment. An atomic command is one whose
execution gives rise to only a single event, and this event has label `:

Definition 1. [`] =def {tr | ∃r ∈ tr.tr = {r} & label(r) = `}.

We can define the semantics of a program as the set of its possible traces, as in the
CSP traces model [15]. For example, the [`] is the set of traces associated with a label
(thought of as a program) `.

If p and q are events, we write p → q to indicate the existence of an arrow between
them. As usual, we write← and +→ for the inverse and transitive closure of the→ rela-
tion, respectively. Additionally, we write↔ for→ ∪ ← and +↔ for +→ ∪ +←. When we
wish to restrict a relation to a particular set of events t ⊆ EV , we write, for example,
+→t. For trace tq, we write p → tq when, for some event q ∈ tq, p → q; and similarly
tp→ tq when for some p ∈ tp and q ∈ tq, p→ q.!"#$%&&'#()*'+,&,-"#)

Figure 1. A trace separated with (∗)

Let P ∗Q be the structured command that denotes the concurrent execution of com-
ponents P and Q. Obviously no event is simultaneously a part of the execution of both
these commands. Furthermore, every event in the execution of P ∗Q is in the execution
of at least one of P and Q. Therefore, the most general form of a trace tr of P ∗Q is the
disjoint union of some trace tp of P with some trace tq of Q:



tr = tp ∗ tq ≡def tr = tp ∪ tq & tp ∩ tq = ∅.

An example of a trace separated with (∗) is shown in Figure 1. The trace separator (∗)
is a partial function on traces; it can be lifted to a total function on sets of traces in the
usual way:

Definition 2. P ∗Q =def {tr | tr = tp ∗ tq & tp ∈ P & tq ∈ Q}.

We call the (∗) function on trace sets the concurrent separator. In words, a trace is a
model of P ∗Q exactly when it can be split into two disjoint parts, one of which is a trace
of P and the other a trace of Q. This definition can be implemented by running P and
Q concurrently, as separate threads or processes in the same or in different computers.
There is no restriction on the arrows which communicate between events of P and events
of Q. The two threads may communicate freely with each other, e.g. through shared
memory or channels. !"#$"%&'()*"+','&-%)

Figure 2. A trace separated with (;)

A stronger notion is sequential separation. Informally, a trace tr may be split into a
sequential separation tp ; tq when there is no arrow from an event of tq to an event of tp:

tr = tp ; tq ≡def tr = (tp ∗ tq) & ¬(tp← tq).

An example of a trace separated with (;) is shown in Figure 2. Again, the trace separator
(;) is lifted pointwise to a total function on trace sets:

Definition 3. P ;Q =def {tr | tr = (tp ; tq) & tp ∈ P & tq ∈ Q}.

This definition expresses an essential property of sequential composition. It allows
implementations to optimise a program by interleaving events of the first trace with



events of the second; the events can even be executed concurrently, if they do not vi-
olate the dependency condition in the definition. We have thus defined what is some-
times called a “weak sequential composition” in concurrency theory, and it has the usual
anomalous consequence. !"#$%"&'()'*+*,'*,#-)
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Figure 3. Backward dependency anomaly: finally z = 3

Consider the trace (tp ; tq) ∗ tr in Figure 3. In our definition, an event in tp can de-
pend on an event of tq through a chain of dependencies in the concurrent thread tr. The
events in Figure 3 are labeled with assignment statements to show how such a trace might
arise. As a result of standard optimisations, this apparently paradoxical data flow—in
which z may take the value 3—occurs in standard computers of the present day. Thus,
our theory faithfully represents the (problematic) features of the real world. It is there-
fore surprising and encouraging that the model validates all the familiar proof rules of
sequential and concurrent reasoning about programs [4,6], as we show in Sections 5
and 6.

A yet stronger notion is parallel separation, in which distinct processes have no in-
terdependencies among them. The definition allows (but does not compel) an implemen-
tation to run the whole of each process concurrently with the others, perhaps in its own
partition of memory:

tr = tp || tq ≡def tr = (tp ; tq) & tr = (tq ; tp).

Again, we lift the definition of trace sets, and call the resulting operation a parallel sep-
arator:

Definition 4. P ||Q =def {tr | tr = (tp || tq) & tp ∈ P & tq ∈ Q}.

In models based on sequential traces [15] this definition is given in terms of arbitrary
interleaving. Our definition seems easier to reason with.
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Figure 4. A trace separated with (||)!"#$%&%'()#)*+,-,."),%-

Figure 5. A trace separated with ([])

The fourth and strongest notion of separation holds between traces when at least one
is empty:

tr = tp [] tq ≡def tr = tp ∪ tq & (tp = ∅ ∨ tq = ∅).

We can represent nondeterministic choice by lifting this operator to sets of traces. The
each execution of process P []Q behaves either as an execution of P or as an execution
of Q:

Definition 5. P []Q =def {tr | tr = tp [] tq & tp ∈ P & tq ∈ Q}.



We shall not deal in further detail with the operators (||) and ([]). It is sufficient to
note that they have the same algebraic properties as the concurrent separator (∗).

3. Graphical Models of Simple Programming Primitives

This section shows graphical models of some simple primitive operations of some
programming languages. Our models are presented informally with pictures of traces.
Events in the traces are depicted by boxes that surround their labels. Dependencies are
depicted by arrows. A plurality of arrows with identical labelling is indicated by an di-
agonal slash.

The orientation of the arrows in the following pictures is informally meaningful:
vertical arrows indicate dependencies between processes (i.e., across separators), and
horizontal arrows indicate dependencies within a process (i.e., only across the sequential
separator (;)).

Arrows that represent data dependencies are labeled with this data and the resource
across which it flows. For horizontal arrows, the resource is above and the data below;
for vertical arrows, the resource is to the left and the data is to the right. We use the letters
x, y, z for variables, and a, b, c for constant values (including names).

b !a 
x
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Figure 6. b!x: Output on channel b

The first primitive is shown in Figure 6. It shows a trace of the command b!x, an
output of the value of variable x on communication channel b. The trace contains a single
event, depicted as a box. The event has a single incoming arrow, which indicates the
incoming flow value a of variable x, and a single outgoing arrow, which indicates the
outgoing flow of value a on channel b. The value a flows in across x from within the
process, and so is represented by a horizontal arrow. The value a flows on channel b
outside of the process, and so is represented by a vertical arrow.

Similarly, Figure 7 shows a trace of the command b?x, an input from communication
channel b into variable x. The trace contains a single event, with a single input arrow that
represents the input of value a from channel b. There may be many output arrows, which
represent thread-local accesses of the value a via variable x. The value a flows out across
x within the process, and so is represented by a horizontal arrow.

Figure 8 shows a trace of a blocking input command, b?x.P (x), as in CCS. Its first
action is to input a value on channel b and give it name x, which is local to the command
P (x). We will use normal data flow arrows to carry the value that has been input to
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Figure 7. b?x: Input from channel b

b ?a 

!"#$%&'()*%+#,*,-('"*.-&/'012'3'4526'

b a

x

a

Figure 8. b?x.P (x): Blocking input from channel b

the places in P (x) where it is used. That is the function of the collection of arrows at
the bottom right of Figure 8. But CCS also ensures that no action of P (x) is executed
before the input. That is the function of the collection of control arrows at the top right
of Figure 8.
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Figure 9. b!x ∗(b?y.P (y)): Communication across channel b



Figure 9 shows communication across channel b, as in CSP [15], by concurrent com-
position of an input with an output command: b!x ∗(b?y.P (y)). According to the def-
inition of (∗), the events of this command include all and only the events of b!x and
b?y.P (y). The value a from variable x is communicated across channel b, and then ac-
cessed via variable y by process P . Note that the communication between threads via
channel b is represented by a vertical arrow.
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Figure 10. c!x ∗(b?y.P (y)): Interleaved output and input events

Figure 10 also shows a concurrent composition of input and output commands,
c!x ∗(b?y.P (y)), with c 6= b. Because the input and output commands employ different
channels, no direct communication occurs—the data from the output commands flows to
the environment, and the data from the input command flows from the environment.

x :=a+b 
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Figure 11. x := x+ y: Variable assignment

Figure 11 shows an assignment command, x := x+ y, which for the sake of exam-
ple we will treat as atomic. The trace has only a single event, labeled with the variable
x and the value assigned to it. There is a single input arrow for each variable in the ex-
pression on the right-hand-side of the assignment statement; in this case, one for variable
x carrying value a, and one for variable y carrying value b. There are output arrows la-
beled with resource x and data value a+ b, indicating the value of the variable after the
assignment. All arrows are horizontal, indicating that variables should only be accessed
locally, within a process.

Finally, Figure 12 shows a program that combines that variable assignment, input,
output and blocking input:

x := x+ y ; (c?z . (d!(x− z) ∗ d?y)) .

After assigning x + y to variable x, a value for z is read from channel c (from the
environment), and x− z is communicated across channel d, which then becomes locally
available via variable y.

Graphical models of additional, advanced commands are given in Section 7.
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Figure 12. x := x+ y ; (c?z.(d!(x− z) ∗ d?y)): A combined example

4. Program algebra

To facilitate comparison with (original) separation logic [11,14,10], in this section we
use notations of propositional logic to represent the corresponding operations on sets.
For example, P ∨ Q represents a nondeterministic choice between P and Q, and can
easily be executed by executing either one of them. P ∧ Q specifies a conjunction of
two desirable properties of a program; it may be false, and therefore cannot in general be
executed. Nevertheless, conjunction is an essential connective for modular specification
of programs. We define the special predicate false as the empty set of traces (which
cannot be implemented), and skip as the set that contains only the empty trace (which is
easily implemented by doing nothing). For predicate P and trace tp, we write P (tp) to
indicate tp ∈ P , and say in this case that tp satisfies P .

The inclusion P ⊆ Q can be interpreted as a refinement ordering:

Definition 6. P |= Q ≡def P ⊆ Q.

It means that every trace observed of P is also a possible trace of Q; hence we often
prove P |= Q by showing, for an arbitrary trace t, that P (t)⇒Q(t). It follows that if P
is implementable, then so is Q; and if P is incorrect, then so is Q. As result, Q can be
implemented by running P instead. For example, the following theorem shows that the
four separators form a chain of refinements:

Theorem 1 (Refinement). P []Q |= P ||Q |= P ;Q |= P ∗Q.

We show that the (;) operator has all the familiar properties: it is associative, dis-
tributes across disjunction, and is monotonic. skip is its unit and false is a zero. The (∗)
operator satisfies all these laws, as well as commutativity.



In the sequel, note that in reasoning about a partially defined term like tp ; tq, we
adopt the convention that mention of a term implies that it is defined. As a result, all our
equalities are strong equalities.

Lemma 1. t = tp ;(tq ; tr) ⇔ t = (tp ; tq) ; tr

Proof. t = tp ;(tq ; tr)
⇔ {definition of (;)}

t = tp ∪ (tq ; tr) & tp ∩ (tq ; tr) = ∅ &
¬(tp← (tq ; tr))

⇔ {definition of (;)}
t = tp ∪ tq ∪ tr & tp ∩ (tq ∪ tr) = tq ∩ tr = ∅ &
¬(tp← (tq ∪ tr)) & ¬(tq ← tr)

⇔ {set theory}
t = tp ∪ tq ∪ tr & tp ∩ tq = tp ∩ tr = tq ∩ tr = ∅ &
¬(tp← tq) & ¬(tp← tr) & ¬(tq ← tr)

⇔ {definition of (;)}
t = (tp ; tq) ∪ tr & (tp ∪ tq) ∩ tr = ∅ & ¬(tq ← tr) & ¬(tp← tr)

⇔ {definition of (;)}
t = (tp ; tq) ; tr

Theorem 2 (Associativity). P ;(Q ;R) = (P ;Q) ;R

Proof. (P ;(Q ;R))(t)
⇔ {definition of (;)}

∃tp, tq, tr : P (tp) & Q(tq) & R(tr) & t = tp ;(tq ; tr)
⇔ {Lemma 1}

∃tp, tq, tr : P (tp) & Q(tq) & R(tr) & t = (tp ; tq) ; tr
⇔ {definition of (;)}

((P ;Q) ;R)(t)

Lemma 2. t = tp ∗ tq ⇔ t = tq ∗ tp

Proof. t = tp ∗ tq
⇔ {definition of (∗)}

t = tp ∪ tq & tp ∩ tq = ∅
⇔ {set theory}

t = tq ∪ tp & tq ∩ tp = ∅
⇔ {definition of (∗)}

t = tq ∗ tp

Theorem 3 (Commutativity). P ∗Q = Q ∗P

Proof. (P ∗Q)(t)
⇔ {definition of (∗)}

∃tp, tq : P (tp) & Q(tq) & t = tp ∗ tq
⇔ {Lemma 2}



∃tp, tq : P (tp) & Q(tq) & t = tq ∗ tp
⇔ {definition of (∗)}

(Q ∗P )(t)

Theorem 4 (Distributivity).

1. P ;(Q ∨R) = (P ;Q) ∨ (P ;R)
2. (Q ∨R) ;P = (Q ;P ) ∨ (R ;P )

Proof. We show the first part; the second is similar.

(P ;(Q ∨R))(t)
⇔ {definition of (;)}

∃tp, t2 : P (tp) & (Q ∨R)(t2) & t = tp ; t2
⇔ {definition of (∨)}

∃tp, t2 : P (tp) & (Q(t2) or R(t2)) & t = tp ; t2
⇔ {propositional calculus}

∃tp, t2 : (P (tp) & Q(t2) & t = tp ; t2) or
(P (tp) & R(t2) & t = tp ; t2)

⇔ {definition of (;)}
((P ;Q) ∨ (P ;R))(t)

Theorem 5 (Monotonicity).

1. P |= Q ⇒ (P ∗R) |= (Q ∗R)
2. P |= Q ⇒ (R ∗P ) |= (R ∗Q)

Proof. (P ∗R)(t)
⇒ {definition of (∗)}

∃tp, tr : P (tp) & R(tr) & t = tp ∗ tr
⇒ {assumption}

∃tp, tr : Q(tp) & R(tr) & t = tp ∗ tr
⇒ {definition of (∗)}

(Q ∗R)(t)

Theorem 6 (Unit, Zero).

1. (P ; skip) = (skip ;P ) = P
2. P ; false = false ;P = false

Proof. 1. (P ; skip)(t)
⇔ { definition of (;) and skip}

∃tp, tq : P (tp) & skip(tq) & t = tp ; tq
⇔ {skip(tq) implies tq = ∅}

P (t)



2. P ; false
= {definition of (;)}

{t | ∃tp ∈ P : ∃tq ∈ false : t = tp ; tq}
= {set theory, false = ∅}

∅
= {definition of false}

false

Let P 0 =def skip and Pn+1 =def Pn ;P , for all natural numbers n. Finite itera-
tion of a program P , written P∞, is then defined as follows:

Definition 7 (Iteration). P∞ =def

⋃
n P

n.

By Kleene’s fixpoint theorem, P∞ is the least fixpoint of the function λX.(X;P ).
Trace sets are thus a model of Kleene algebra [7,5], where the additive and multiplicative
operations are given respectively by disjunction and sequential composition (or, equally
well, by disjunction and concurrent composition).

Lemma 3. For all n ≥ 0, P ;Pn = Pn+1

Proof. By induction on n. If n = 0:

P ;P 0

= {P 0 = skip}
P ; skip

= {skip is unit, Theorem 6}
skip ;P

= {definition of Pn}
P 1

Otherwise:

P ;Pn+1

= {definition of Pn}
P ;(Pn ;P )

= {associativity of (;)}
(P ;Pn) ;P

= {induction on n}
Pn+1 ;P

= {definition of Pn}
Pn+2

Theorem 7 (Unfold).

1. (skip ∨ (P∞ ;P ) |= P∞

2. (skip ∨ (P ;P∞)) |= P∞

Proof. 1. skip |= P 0 |= P , and



(P∞ ;P )(t)
⇒ {definition of (∗) and (;)}

∃n, tp′, tp : Pn(tp′) & P (tp) & t = tp′ ; tp
⇒ {definition of (∗)}

∃n : Pn(t)
⇒ {definition of P∞}

P∞(t)

2. From part 1) and Lemma 3.

Theorem 8 (Induction).

1. (Q ∨ (P ;R)) |= R) ⇒ (P∞ ;Q) |= R
2. ((Q ∨ (R ;P )) |= R) ⇒ (Q ;P∞) |= R

Proof. We show by induction on n that, for all n, (Pn ;Q) |= R. If n = 0 then:

P 0 ;Q
|= {P 0 = skip, Theorem 6}

Q
|= {propositional logic}

Q ∨ (P ;R)
|= {assumption}

R.

Otherwise,

Pn+1 ;Q
|= {Lemma 3}

(P ;Pn) ;Q
|= {associativity of (;)}

P ;(Pn ;Q)
|= {induction on n}

P ;R
|= {propositional logic}

Q ∨ (P ;R)
|= {assumption}

R.

The definitions of P ∗Q and P ;Q are instances of general model theories of sep-
aration logic and bunched logic [13,3,2], and thus inherit all of the general properties
implied by these theories. In the sequel we describe properties of the model that concern
interaction between the connectives.

Lemma 4. t = (tp ∗ tq) ;(tr ∗ ts)⇒ t = (tp ; tr) ∗(tq ; ts)



Proof. t = (tp ∗ tq) ;(tr ∗ ts)
⇒ {definition of (;)}

t = (tp ∗ tq) ∪ (tr ∗ ts) & (tp ∗ tq) ∩ (tr ∗ ts) = ∅ &
¬((tp ∗ tq)← (tr ∗ ts))

⇒ {definition of (∗)}
t = tp ∪ tq ∪ tr ∪ ts & tp, tq, tr, ts are pairwise disjoint &
¬((tp ∪ tq)← (tr ∪ ts))

⇒ {set theory}
t = tp ∪ tq ∪ tr ∪ ts & tp, tq, tr, ts are pairwise disjoint &
¬(tp← tr) & ¬(tq ← ts)

⇒ {definition of (;)}
t = (tp ; tr) ∪ (tq ; ts) & tp, tq, tr, ts are pairwise disjoint

⇒ {definition of (∗)}
t = (tp ; tr) ∗(tq ; ts)

Theorem 9 (Exchange). (P ∗Q) ;(P ′ ∗Q′) |= (P ;P ′) ∗(Q ;Q′)

Proof. ((P ∗Q) ;(P ′ ∗Q′))(t)
⇒ {definition of (∗) and (;)}

∃tp, tq, tp′, tq′ : P (tp) & Q(tq) & P ′(tp′) & Q′(tq′) &
t = (tp ∗ tq) ;(tp′ ∗ tq′)

⇒ {Lemma 4}
∃tp, tq, tp′, tq′ : P (tp) & Q(tq) & P ′(tp′) & Q′(tq′) &
t = (tp ; tp′) ∗(tq ; tq′)

⇒ {definition of (∗) and (;)}
((P ;P ′) ∗(Q ;Q′))(t)

Intuitively, the exchange law holds because the antecedent restricts dependencies
of P ′ and Q′ on both P and Q, whereas the consequent only restricts dependencies of
Q′ on Q and of P ′ on P . The laws below are easily derived from the exchange law by
substituting skip for some of the operands.

Corollary 1.

1. P ;(Q ∗R) |= (P ;Q) ∗R
2. (P ∗Q) ;R |= P ∗(Q ;R)

Proof. We show P ;(Q ∗R) |= (P ;Q) ∗R here; the other proof is similar.

P ;(Q ∗R)
|= {skip is a unit of (∗), by Theorem 6}

(P ∗ skip) ;(Q ∗R)
|= {Theorem 9, the Exchange law}

(P ;Q) ∗(skip ;R)
|= {skip is a unit of (;), by Theorem 6}

(P ;Q) ∗R.



5. Hoare Logic

The familiar assertional triple P { Q } R over predicates P ,Q and R is defined as fol-
lows:

Definition 8. P { Q } R ≡def (P ;Q) |= R.

Note that our assertion language is the same as our programming language. Like
programs, our assertions P andR describe the entire history of execution. Thus the triple
defined above states that if P is a description of what has happened just before Q starts,
then R describes what has happened when Q has finished. The more familiar kind of
single-state assertions describe the history abstractly as the set of traces that end in a state
satisfying the assertion. The usual axioms of assertional reasoning [4] are easily proved
sound.

Theorem 10.

1. P { Q } R & P { Q } R′ ⇒ P { Q } R ∧R′
2. P { Q } R & P ′ { Q } R ⇒ P ∨ P ′ { Q } R
3. P { Q } S & S { Q′ } R ⇒ P { Q ;Q′ } R
4. P { Q } R & P { Q′ } R ⇒ P { Q ∨Q′ } R
5. P { Q } R & P ′ { Q′ } R′ ⇒ P ∗P ′ { Q ∗Q′ } R ∗R′
6. P { Q } R ⇒ F ∗P { Q } F ∗R

Proof. 1. We show (P ;Q) |= (R ∧R′):
P ;Q

|= {assumption}
R and R′

|= {definition of (∧)}
R ∧R′

2. We show ((P ∨ P ′) ;Q) |= R:

(P ∨ P ′) ;Q
|= {Theorem 4, distributivity}

(P ;Q) ∨ (P ′ ;Q)
|= {assumption}

R ∨R
|= {propositional logic}

R

3. We show (P ;(Q ;Q′)) |= R:

P ;(Q ;Q′)
|= {definition of (;)}

(P ;Q) ;Q′

|= {assumption, monotonicity of (;) by Theorem 5}
S ;Q′

|= {assumption}
S.



4. We show (P ;(Q ∨Q′)) |= R:

P ;(Q ∨Q′)
|= {Theorem 4, distributivity}

(P ;Q) ∨ (P ;Q′)
|= {assumption}

R ∨R
|= {propositional logic}

R.

5. (P ∗P ′) ;(Q ∗Q′)
|= {Theorem 9, the Exchange law}

(P ;Q) ∗(P ′ ;Q′)
|= {assumption}

R ∗R′
6. P ;Q |= R

⇒ {Theorem 5, monotonicity of (∗)}
F ∗(P ;Q) |= F ∗R

⇒ {Corollary 1}
(F ∗P ) ;Q |= F ∗R

The last two laws are reminiscent of two of the basic axioms of separation logic [10].
But the standard separation logic rule is stronger and more useful. This is because the
standard definition of separating conjunction applies to assertions about the current state.
The state is an abstraction of the history of events which caused it. The validity of the
abstraction depends on assumptions about the consistency of memory, which in this work
we have not made. We leave for future work the investigation of the logical connections
between various kinds of weak memory and the validity of the relevant program proof
rules.

The weakest precondition of program Q and postcondition R is defined as follows:

Definition 9. (Q –;R)(tr) ≡def ∀tq : Q(tq) & (tr ; tq) defined ⇒ R(tr ; tq).

Informally, a trace satisfies (Q –;R) if, whenever followed by a trace of Q, the
combined trace satisfies R. The following theorem states in terms of Hoare triples that
(Q –;R) is a pre-condition of R under program Q, and that it is the weakest such condi-
tion.

Theorem 11 (Galois adjoint). P { Q } R ⇔ P |= (Q –;R)

Proof. In one direction:

P (tp) and Q(tq) and tp ; tq defined
⇒ {definition of (;)}

(P ;Q)(tp ; tq)
⇒ {assumption}

R(tp ; tq).

In the other direction:



(P ;Q)(tr)
⇒ {definition of (;)}

∃tp, tq : P (tp) & Q(tq) & tr = tp ; tq
⇒ {assumption}

∃tp, tq : R(tp ; tq) & tr = tp ; tq
⇒ {predicate calculus}

R(tr).

The (∗) operator has a similarly defined adjoint called the magic wand, usually writ-
ten −∗.

6. The Rely/Guarantee Calculus

A predicate is called acyclic when all of its traces are acyclic. Some theorems in this
section require this assumption to ensure linearizeability.
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Figure 13. Linearity

Theorem 12 (Linearity). Suppose e ∈ tr, and tr is acyclic. Then for some tp, tq, tr =
tp ;{e} ; tq.

Proof. Let tp = {d ∈ tr | d +→ e} and tq = tr \ (tp ∪ {e}), as shown in Figure 13. It
is not the case that e → tp, because then e +→ e, which violates acyclicity; so tp ;{e} is
defined. It is not the case that tq → tp because if for some d ∈ tq such that d→ tp, then
also d +→ e, which contradicts the definition of tq; so tp ; tq is defined. Finally, it is not
the case that tq → e, because d ∈ tq such that d → e again contradicts the definition of
tq.

Predicate G is called an invariant when every event of a trace that satisfies G also
satisfies G:



Definition 10. G invariant ≡def ∀tr : (G(tr) ⇔ ∀e ∈ tr : G({e})).

Invariants are also satisfied by the empty trace, which informally means that an
invariant can be satisfied by doing nothing.

Theorem 13. For invariant G:

1. skip |= G
2. G(tp ∪ tq) iff G(tp) and G(tq)
3. G ;G = G ∗G = G
4. G ∗ [`] = G ; [`] ;G, when G ∗ [`] is acyclic.

Proof. 1. ∀e ∈ ∅ : G({e}) is vacuously true, and so G(∅) by definition of invariant.
2. G(tp ∪ tq)

⇔ {definition of invariant}
∀e ∈ (tp ∪ tq) : G({e})

⇔ {set theory}
∀e ∈ tp : G({e}) and ∀e ∈ tq : G({e})

⇔ {definition of invariant}
G(tp) and G(tq).

3. (G ∗G)(t)
⇔ {definition of (∗)}

∃tp, tq : t = tp ∗ tq & G(tp) & G(tq)
⇔ {G is invariant, part 2}

∃tp, tq : t = tp ∗ tq & G(tp ∗ tq)
⇔ {set theory}

G(t)
4. In one direction:

(G ∗ [`])(t)
⇒ {definition of (∗) and [`]}

∃tr, e : G(tr) & t = tr ∗{e}
⇒ {Theorem 12, linearity}

∃tr1, tr2, e : G(tr1 ∗ tr2) & t = tr1 ;{e} ; tr2
⇒ {G is invariant, part 3}

∃tr1, tr2, e : G(tr1) & G(tr2) & t = tr1 ;{e} ; tr2
⇒ {definition of (;)}

(G ; [`] ;G)(t)

In the other direction:

G ; [`] ;G
⇒ {(;) ⊆ (∗) and commutativity of (∗)}

G ∗G ∗ [`]
⇒ {G is invariant, part 3}

G ∗ [`]

The strongest invariant implied by both G and G′ is (G ∧G′); the predicate G∇G′
defined below is the weakest invariant that implies both G and G′:



Definition 11. G∇G′(tr) ≡def ∀e ∈ tr : G({e}) ∨G′({e}).

It is easy to see that a predicate G is an invariant iff G = G∇G; other facts are
collected below.

Theorem 14. For invariant G:

1. Q |= G & Q′ |= G′ ⇒ (Q ∗Q′) |= (G∇G′)
2. Q |= G & Q′ |= G′ ⇒ (Q ;Q′) |= (G∇G′)

Proof. We show (Q ∗Q′) |= (G∇G′); the other implication follows because
Q ;Q′ |= Q ∗Q′. Let t be an arbitrary trace.

(Q ∗Q′)(t)
⇒ {definition of (∗)}

∃tq, tq′ : Q(tq) & Q′(tq′) & t = tq ∗ tq′
⇒ {assumption}

∃tq, tq′ : G(tq) & G′(tq′) & t = tq ∗ tq′
⇒ {definition of (∇) and (∗)}

(G∇G′)(t).

As in the Jones rely/guarantee calculus, invariants are used to describe ways in which
one process is permitted to interfere with another. A rely condition is an invariant that
describes the assumptions a process makes about interference from its environment dur-
ing execution; similarly, a guarantee condition is an invariant that describes the guarantee
that a process makes regarding its own interference with the environment. Satisfaction of
the invariant condition G by process Q is simply expressed by the implication Q |= G.

The Jones quintuple P R { Q } G S is a partial correctness specification of pro-
gram Q in the presence of interference from other threads. It allows the program Q to
rely on the environment to satisfy the invariant R, and in turn guarantees the condition
G. (R ∗Q) also satisfies postcondition S on the assumption of precondition P :

Definition 12. P R { Q } G S ≡def P { R ∗Q } S & Q |= G.

The base rule of the Jones calculus reduces concurrent reasoning to sequential rea-
soning within a single thread.

Theorem 15. P R { [`] } G S ⇔ P { R ; [`] ;R } S & [`] |= G, when R ∗ [`] is
acyclic.

Proof. P R { [`] } G S
⇔ {definition}

P { R ∗ [`] } S and [`] |= G
⇔ {Theorem 13, part 4}

P { R ∗ [`] ∗R } S and [`] |= G

Theorem 16 (Concurrency). P R { Q } G S & P ′ R′ { Q′ } G′ S′ ⇒
(P ∧ P ′) (R ∧R′) { Q ∗Q′ } (G∇G′) (S ∧ S′), when G′ |= R and G |= R′.



Proof. Q ∗Q′ |= G∇G′ follows from Theorem 14. Below we show (P ∧ P ′) { (R ∧
R′) ∗(Q ∗Q′) } S. By a similar argument it can be shown that (P ∧ P ′) { (R ∧
R′) ∗(Q ∗Q′) } S, from which the conclusion follows from Theorem 10.

(P ∧ P ′) ;((R ∧R′) ∗(Q ∗Q′))
|= { (;) and (∗) are monotonic }

P ;(R ∗(Q ∗Q′))
|= { (∗) is monotonic and Q′ |= G′ }

P ;(R ∗(Q ∗G′))
|= { (∗) is monotonic and G′ |= R }

P ;(R ∗(Q ∗R))
|= { associativity and commutativity of (∗) }

P ;((R ∗R) ∗Q)
|= { R is invariant, so R ∗R = R by Theorem 13, part 3 }

P ;(R ∗Q)
|= { P ;(R ∗Q) |= S by assumption }

S.
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Figure 14. Weak sequentiality violates the Jones rule for sequential composition

The Jones rule for sequential composition is:

P R { Q } G S & S R′ { Q′ } G′ S′ ⇒ P (R ∧R′) { Q ;Q′ } (G∇G′) S′.

To prove soundness of this rule, we have to show Q ;Q′ |= G∇G′ and P { (R ∧
R′) ∗(Q ;Q′) } S. The first assertion follows from Theorem 14, but the second assertion
is not valid in this setting. Consider the following model, where q ← r ← q′:



P = {∅}
R = {{r}, ∅} R′ = {{r}, ∅}
Q = {{q}} Q′ = {{q′}}
S = {{r, q}, {q}} S′ = {{q, q′}}

The trace {r, q, q′} is shown in Figure 14. The reader can check that the antecedents hold
in this model, and also that {r, q, q′} satisfies P ;((R ∧ R′) ∗(Q ;Q′)), but not S′. The
countermodel resembles the paradoxical example in Figure 3 in that there is no direct
dependency between q and q′, but interference from the environment yields an indirect
dependency from the second operand to the first.

The Jones rule is of course valid for normal strong sequential composition, since all
the events of the second operand would be forced by control dependency to be executed
after those of the first operand. The anomalous dependency is then ruled out by acyclicity.
But this would sacrifice all opportunity for standard optimisations. All that is necessary
is to ensure that the “critical” events in the trace of P ;Q are connected by a control
dependency. In practice (e.g., in a parallel ALGOL language [1]), critical events are
protected by an exclusion semaphore; and the definition of the acquisition and release of
semaphores requires that they be linearly ordered by a control arrow.

To prove the weak sequential composition axiom in the Jones calculus, we formalize
our assumptions as follows. We say an event p ∈ tp is critical with respect to tr when,
for some event r ∈ tr, either p ↔ r. In established parlance, traces with critical events
events would be called critical regions. We say tp is protected from tr if every pair of
events p, p′ ∈ tp that are critical with respect to tr are connected; i.e., p +↔tp p

′. (Recall
from Section 2 that we write +↔ to mean +→ ∪ +←, and in particular not to indicate the
transitive closure of↔.) Finally, P is protected from R when every tp ∈ P is protected
from every tr ∈ R, and P ∗R is acyclic.

In Figure 3, the two events in the trace tp ; tq are both critical with respect to tr. To
protect them, it is necessary to connect these critical events by a chain of dependencies.
Then the possibility of a backward dependency is ruled out by acyclicity.

The sequential composition theorem below is weakened to require that the program
(Q ;Q′) be protected from the environment (R ∧R′), which rules out the counterexam-
ple.

Lemma 5. If tq ; tq′ is protected from tr and tr ∗(tq ; tq′) is defined, then there exists
tr1, tr2 such that tr = tr1 ; tr2 and (tr1 ∗ tq) ;(tr2 ∗ tq′) is defined.

Proof. Let tr1 = {e ∈ tr | ∃q ∈ tq : e +→ q} and tr2 = tr \ tr1. First, t = tr1 ; tr2
because if there were some e1 ∈ tr1 and e2 ∈ tr2 such that e2→ e1, then also e2 +→ q
for some q ∈ tq, which implies e2 ∈ tr1.

To show that (tr1 ∗ tq) ;(tr2 ∗ tq′) is defined, we also have to show 1) that tr1 ∗ tq
and tr2 ∗ tq′ are defined, 2) tq ; tr2 is defined, and 3) tr1 ; tq′ is defined. By assumption,
tr is disjoint from tq and tq′, which implies that tr1 ∗ tq and tr2 ∗ tq′ are defined. Next,
tq ; tr2 holds because if there were some r ∈ tr2 and q ∈ tq such that r → q, then also
r

+→ q, which implies r ∈ tr1, a contradiction.
Finally, suppose tr1 ; tq′ does not hold. Then, for some q′ ∈ tq′ and r ∈ tr1, q′ → r.

By definition of tr1, q′ → r
+→ q, for some q in tq. Hence also q +↔(tq ; tq′) q

′, because



tq ; tq′ is protected from tr. But then either tq +← tq′, which violates definedness of
tq ; tq′, or q +→ q′

+→ q, which violates the acyclicity.

Lemma 6. For invariants R,R′, (R∧R′) ∗(Q ;Q′) |= (R ∗Q) ;(R′ ∗Q), when Q ;Q′

is protected from (R ∧R′).

Proof. ((R ∧R′) ∗(Q ;Q′))(t)
⇒ {definition of (;) and (∗) for trace sets}

∃tr, tq, tq′ : (R ∧R′)(tr) & (Q)(tq) & (Q′)(tq′) &
t = tr ∗(tq ; tq′)

⇒ {Lemma 5}
∃tr1, tr2, tq, tq′ : (R ∧R′)(tr1 ; tr2) & (Q)(tq) & (Q′)(tq′) &
t = (tr1 ∗ tq) ;(tr2 ∗ tq′)

⇒ {R and R′ are invariant, Theorem 13, part 3}
∃tr1, tr2, tq, tq′ : (R)(tr1) & (R′)(tr2) & (Q)(tq) & (Q′)(tq′) &
t = (tr1 ∗ tq) ;(tr2 ∗ tq′)

⇒ {definition of (∗) and (;) }
((R ∗Q) ;(R′ ∗Q′))(t)

Theorem 17. P R { Q } G S & S R′ { Q′ } G′ S′ ⇒
P (R ∧R′) { Q ;Q′ } (G∇G′) S′, when (Q ;Q′) is protected from (R ∧R′).

Proof. To show the consequent, we have two obligations:

1. (Q ;Q′) |= (G∇G′) — By assumption,Q |= G andQ′ |= G′. The desired prop-
erty follows from Theorem 14.

2. P { (R ∧R′) ;(Q ;Q′) } S′ —

P { R ;Q } S & S { R′ ;Q′ } S′
⇒ {sequential composition of Hoare logic}

P { (R ∗Q) ;(R′ ∗Q′) } S′
⇒ {Lemma 6}

P { (R ∧R′) ∗(Q ;Q′) } S.

7. Graphical Models of Advanced Programming Primitives

In this section, graphical models are described for more advanced programming primi-
tives. The same notational conventions are used as in Section 3.

First consider the CCS [8] program b!x | b?y.P (y). There are two possibilities for
its execution: either the output from the first process is directly communicated to the
second process, as previously shown in Figure 9; or the input and output commands are
interleaved, as in Figure 15. In spite of the fact that the channel name b is the same for
both input and output, the channel may be multiplexed in CCS, so that both output and
input communicate with their common environment, instead of with each other. This
models the sequential programming phenomenon of interference.
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Figure 15. b!x | (b?y.P (y)): CCS communication
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Figure 16. A[x] := y: Array assignment

Figure 16 shows a trace of an array assignment command, A[x] := y. The trace
contains a single event indicating the assignment. There is an input arrow for the value
a of variable x, and value b of variable y. There are also output arrows, all labeled with
the resource A[a] and its value after the assignment, b.

a :=b 
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Figure 17. [x] := y: Indirect assignment

Figure 17 shows a trace of an indirect assignment command [x] := y, as found in
an imperative programming languages with references or pointers. The trace is similar to
Figure 16. There is an incoming arrow for the value (memory location) a of variable x,
and the value b of variable y. Again, there are output arrows, all labeled with the memory
location a and its value after the assignment, b. Here we have modeled each element of
the array A as a separate resource. This is more realistic that the traditional treatment of
arrays in models of Hoare logic, where an assignment to a subscripted variable is treated
as assigning an array value to the complete array. An advantage of the new model is that
it enables different parts of the same array to be owned and updated simultaneously by
concurrent processes.

Figure 6 in Section 3 showed a direct output command, in which the name of channel
is fixed in advance. Another level of indirection is needed, however, if channel names are
dynamic, as in the π-calculus [9]. An indirect output command y!x, as in the π-calculus,
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Figure 18. y!x: Indirect output

is shown in Figure 18. The trace is identical that of the direct output command, but for
another input arrow that provides the output channel name b from variable y.
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Figure 19. y?x.P (x): Indirect input

Figure 19 shows an indirect blocking input command, y?x.P (x), as found in the π-
calculus. The trace is identical to the direct blocking input command, shown in Figure 7
in Section 3, but for another input arrow that provides the input channel name b from
variable y.

new a 
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Figure 20. new x.P (x): Allocation

The π-calculus can declare a new channel for use in the process P by the notation
new x.P (x). Figure 20 shows a trace of the command new x.P (x) from the π-calculus.
Allocation of the new channel is modelled as an event added to the events of P . The ad-
ditional event has no incoming arrows. As in the case of the input command, its outgoing
arrows are just the set of input arrows of P that are labelled by with resource x and value
a, the name of the new channel. In contrast with the input command, there are no control
arrows, so the exact timing of the new event is undetermined. The semantics of the new



command is embodied in two constraints on the definition of a trace: 1) for each memory
location a, at most one event event labeled new amust appear; and 2) a new a event must
be connected to every event e labeled with a (i.e., d ∗→ e, where label(d) = new a).
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Figure 21. new y.(y!x | y?x.P (x)): π-calculus communication

Consider again the program b!x | (b?y.P (y)), which transfers the value stored in
variable x across the shared channel b. In the π-calculus as in CCS, communication
may occur either directly between the two processes, or may be interleaved with events
from the environment. By using a newly allocated channel, interleaving can be avoided
because no other processes can interfere. A trace of program new y.(y!x | y?x.P (x)) is
shown in Figure 21. Note that the allocation event provides the channel name to both
the channel input and output events, and the only input arrow is for the value of x to be
communicated.

dispose a 
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Figure 22. dispose x: Deallocation

The trace of the new command in Figure 20 could also be a trace of a memory allo-
cation command in a C-like language. In Figure 22, we show a trace of a dispose com-
mand, which frees a previously allocation memory location. The trace contains a single
event and no output arrows. There is a single input arrow that gives the memory location
to be disposed. As with the new command, the semantics of the dispose command is
embodied in two constraints on the definition of a trace: 1) for each memory location a,
at most one event event labeled dispose a must appear; and 2) every event e labeled with
a must be connected to a dispose a event (i.e., e ∗→ d, where label(d) = dispose a).



Acknowledgements

The authors thank the following colleagues for their comments: Josh Berdine, Ernie Co-
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