
Graphical Models of Separation Logic

Ian Wehrmana, C. A. R. Hoareb, Peter W. O’Hearnc

aThe University of Texas at Austin, USA
bMicrosoft Research Cambridge, UK
cQueen Mary University London, UK

Abstract

Graphs are used to model control and data flow among events occurring in the
execution of a concurrent program. Our treatment of data flow covers both
shared storage and external communication. Nevertheless, the laws of Hoare
and Jones correctness reasoning remain valid when interpreted in this general
model.

Key words: concurrency, formal semantics.

1. Introduction

In this paper, we present a trace semantics based on graphs: nodes represent
the events of a program’s execution, and edges represent dependencies among
the events. The style is reminiscent of partially ordered models [11, 16], though
we do not generally require properties like transitivity or acyclicity. A linear
trace can be represented by a graph in which there is a chain of arrows between
every pair of nodes. But we also allow any node to have mutually independent
predecessors on which it depends, and successors which it enables.

Concurrency and sequentiality are defined using variations on separating
conjunctions. Whereas the conjunction in the original separation logic partitions
addresses in a heap [10, 14], the conjunctions here partition events in a trace.
In this way, the model can be thought of as a spatial logic [1, 4], though it
lacks such features as a mechanism for hiding names or expressing locality, and
does not ensure that satisfying models are closed under isomorphism. Nor does
the model make use of an explicit notion of resource, as in [13]. However,
the model does have many pleasant algebraic properties, which are shown with
surprisingly simple proofs, presented in a companion report [6]. We present a
number of theorems about the generic model, including the soundness of the
laws of Hoare logic [5] and the Jones rely/guarantee calculus [7]. No particular
languages or applications are studied in the paper; we leave this to future work.

2. Traces and Separation

A directed graph is a pair of sets (EV,AR), where EV is a set of nodes and
AR is a set of directed arrows linking the nodes. We think of the objects of

Preprint submitted to Elsevier June 2, 2009

EV as representing occurrences of atomic events recorded in a trace of program
execution, and the objects of AR represent control or data flows that occur
between events. If p and q are events, we write p→ q to indicate the existence
of an arrow between them. A labelled graph also has a labelling function on
its events and arrows. In this paper, we are interested only in event labels:
label(e) = ` means that ` is the atomic action of the programming language
(e.g., x := x+ 2) whose execution is recorded as e.

The sets EV and AR are considered to contain all possible events in the
execution of a program, so as to constitute a kind of complete trace. From this
complete execution, smaller, possibly incomplete traces will be selected by the
algebraic operations defined in this paper. These portions of the complete exe-
cution record the execution of a component of the program, and will themselves
be called simply traces.

Formally, a trace is a subset of EV . A singleton trace is called atomic; we
denote by [`] the set of singleton traces in which the only event has label `:

[`] =def {tr | ∃e ∈ tr . tr = {e} & label(e) = `}.

We can define the semantics of a program as the set of its possible traces, as in
the CSP traces model [15]. For example, [`] is the set of traces associated with
a label (thought of as a program) `.

We write P ∗Q for the structured command that denotes the concurrent
execution of components P and Q. No event is simultaneously part of the
execution of both these commands, but every event is in the execution of at
least one of P and Q. Therefore, the most general form of a trace tr of P ∗Q is
the disjoint union of some trace tp of P with some trace tq of Q:

tr = tp ∗ tq ≡def tr = tp ∪ tq & tp ∩ tq = ∅.

This partial function on traces can be lifted to a total function on sets of traces
in the usual way:

P ∗Q =def {tr | tr = tp ∗ tq & tp ∈ P & tq ∈ Q}.

We call the (∗) function on trace sets the concurrent separator. In words, a
trace is a model of P ∗Q exactly when it can be split into two disjoint parts,
one of which is a trace of P and the other a trace of Q. This definition can be
implemented by running P and Q concurrently, as separate threads or processes
in the same or in different computers. There is no restriction on the arrows
which communicate between events of P and events of Q. The two threads may
communicate freely with each other, e.g. through shared memory or channels.

A stronger notion is sequential separation. Informally, a trace tr may be
split into a sequential separation tp ; tq when there is no arrow from an event of
tq to an event of tp:

tr = tp ; tq ≡def tr = (tp ∗ tq) & ∀p ∈ tp .∀q ∈ tq .¬(q → p).

Again, this trace separator is lifted pointwise to a total function on trace sets:

P ;Q =def {tr | tr = (tp ; tq) & tp ∈ P & tq ∈ Q}.

2

This definition expresses an essential property of sequential composition. It
allows implementations to optimise a program by interleaving events of the first
trace with events of the second; the events can even be executed concurrently, if
they do not violate the dependency condition in the definition. We have thus de-
fined what is sometimes called a “weak sequential composition” in concurrency
theory.

tp

tr

tq;

*

z:=x y:=3

x:=y

Figure 1: Backward dependency flow

Consider the trace (tp ; tq) ∗ tr in Fig. 1. In our definition, an event in tp
can depend on an event of tq through a chain of dependencies in the concur-
rent thread tr. The events in Fig. 1 are labeled with assignment statements
to show how such a trace might arise. As a result of standard optimisations,
this apparently paradoxical data flow—in which z may take the value 3—occurs
in standard computers of the present day due to optimizations that result in
relaxed memory consistency guarantees. Thus, our theory faithfully represents
the problematic features of the real world. It is therefore surprising and en-
couraging that the model validates all the familiar proof rules of sequential and
concurrent reasoning about programs [5, 7], as we show.

3. Program algebra

To facilitate comparison with (original) separation logic, in this section we
use notations of propositional logic to represent the corresponding operations
on sets. For example, P ∨ Q represents a nondeterministic choice between P
and Q, and can easily be executed by executing either one of them. P ∧ Q
specifies a conjunction of two desirable properties of a program; it may be
false, and therefore cannot in general be executed. Nevertheless, conjunction
is an essential connective for modular specification of programs. We define the
special predicate false as the empty set of traces (which cannot be implemented
because no trace satisfies it), and skip as the set that contains only the empty

3

trace (which is easily implemented by doing nothing). For predicate P and trace
tp, we write P (tp) to indicate tp ∈ P , and say in this case that tp satisfies P .

The inclusion P ⊆ Q can be interpreted as a refinement ordering:

P |= Q ≡def P ⊆ Q.

It means that every trace observed of P is also a possible trace of Q. Conse-
quently, if P can be implemented by executing a particular trace, then so can
Q by executing that same trace; and if P is incorrect, then so is Q. As result,
Q can be implemented by running P instead.

It is easy to show that the (;) operator has all the familiar properties: it is
associative, distributes across disjunction, and is monotonic. skip is its unit and
false is a zero. Finite iteration of a program P is given by the least fixpoint of the
function λX.(skip∨ (X;P)), defined in accordance with the Knaster-Tarski the-
orem. Trace sets are thus a model of Kleene algebra [8], where the additive and
multiplicative operations are given respectively by disjunction and sequential
composition (or, equally well, disjunction and concurrent composition). Similar
laws hold for the (∗) operator, and it is commutative as well. Indeed, the defi-
nitions of P ∗Q and P ;Q are instances of general model theories of separation
logic and bunched logic [12, 3, 2], and thus inherit all of the general properties
implied by these theories. In the sequel we describe properties of the model that
concern interaction between the connectives.

Theorem 1 (Exchange). (P ∗Q) ;(P ′ ∗Q′) |= (P ;P ′) ∗(Q ;Q′)

Intuitively, the exchange law above holds because the antecedent restricts
dependencies of P ′ and Q′ on both P and Q, whereas the consequent only
restricts dependencies of Q′ on Q and of P ′ on P . The laws below are easily
derived from the exchange law by substituting skip for some of the operands.

Corollary 1. 1. P ;Q |= P ∗Q
2. P ;(Q ∗R) |= (P ;Q) ∗R
3. (P ∗Q) ;R |= P ∗(Q ;R)

4. Hoare Logic

The familiar assertional triple P { Q } R over predicates P ,Q and R is
defined as follows:

P { Q } R ≡def (P ;Q) |= R.

P describes what has happened before Q starts and R describes what has hap-
pened when Q has finished. The more familiar kind of single-state assertions
describe the history abstractly as the set of traces that end in a state satisfying
the assertion. The usual axioms of assertional reasoning [5] are easily proved
sound.

Theorem 2. 1. P { Q } R & P { Q } R′ ⇒ P { Q } R ∧R′

4

2. P { Q } R & P ′ { Q } R ⇒ P ∨ P ′ { Q } R
3. P { Q } S & S { Q′ } R ⇒ P { Q ;Q′ } R
4. P { Q } R & P { Q′ } R ⇒ P { Q ∨Q′ } R
5. P { Q } R ⇒ F ∗P { Q } F ∗R
6. P { Q } R & P ′ { Q′ } R′ ⇒ P ∗P ′ { Q ∗Q′ } R ∗R′

The last two laws are reminiscent of two of the basic axioms of separation
logic [9]. However, the standard interpretation of the separating conjunction is
radically different from ours.

We define the weakest precondition of program Q and postcondition R:

(Q –;R)(tr) ≡def ∀tq .Q(tq) & (tr ; tq) defined ⇒ R(tr ; tq).

Informally, a trace satisfies (Q –;R) if, whenever followed by a trace of Q, the
combined trace satisfies R. The following theorem states in terms of Hoare
triples that (Q –;R) is a pre-condition of R under program Q, and that it is the
weakest such condition.

Theorem 3 (Galois adjoint). P { Q } R ⇔ P |= (Q –;R)

The (∗) operator has a similarly defined adjoint called the magic wand, usually
written (−∗).

5. The Rely/Guarantee Calculus

A predicate is called acyclic when all of its traces are acyclic. Some theorems
in this section require this assumption to ensure linearizeability. Predicate G
is called an invariant when every event of a trace that satisfies G also itself
satisfies G:

G invariant ≡def ∀tr . (G(tr) ⇔ ∀e ∈ tr .G({e})).

Invariants are also satisfied by the empty trace, which informally means that
an invariant can be satisfied by doing nothing. The strongest invariant implied
by both G and G′ is (G∧G′); the predicate G∇G′ defined below is the weakest
invariant that implies both G and G′:

G∇G′(tr) ≡def ∀e ∈ tr .G({e}) ∨G′({e}).

It is easy to see that a predicate G is an invariant iff G = G∇G; other facts are
collected below.

Theorem 4. For invariant G:

1. G(tp ∪ tq) iff G(tp) and G(tq)
2. G ;G = G ∗G = G

3. G ∗ [`] = G ; [`] ;G, when G ∗ [`] is acyclic.

5

As in the Jones rely/guarantee calculus, invariants are used to describe ways
in which one process is permitted to interfere with another. A rely condition is
an invariant that describes the assumptions a process makes about interference
from its environment during execution; similarly, a guarantee condition is an
invariant that describes the guarantee that a process makes regarding its own
interference with the environment. Satisfaction of the invariant condition G by
process Q is simply expressed by the implication Q |= G. Such a judgement can
be proved by the following calculus.

Theorem 5. For invariant G:

1. Q |= G & Q′ |= G′ ⇒ (Q ∗Q′) |= (G∇G′)
2. Q |= G & Q′ |= G′ ⇒ (Q ;Q′) |= (G∇G′).

The Jones quintuple P R { Q } G S is a partial correctness specification
of program Q in the presence of interference from other threads. It allows
the program Q to rely on the environment to satisfy the invariant R, and in
turn guarantees condition G. Q also satisfies postcondition S on assumption of
precondition P :

P R { Q } G S ≡def P { R ∗Q } S & Q |= G.

The base rule of the Jones calculus reduces concurrent reasoning to sequen-
tial reasoning; reasoning about concurrent composition is reduced to reasoning
about individual processes.

Theorem 6. P R { [`] } G S ⇔ P { R ; [`] ;R } S & [`] |= G, when R ∗ [`]
is acyclic.

Theorem 7 (Concurrency). P R { Q } G S & P ′ R′ { Q′ } G′ S′ ⇒
(P ∧ P ′) (R ∧R′) { Q ∗Q′ } (G∇G′) (S ∧ S′), when G′ |= R and G |= R′.

Proof. Q ∗Q′ |= G∇G′ follows from Thm. 5. Below we show (P ∧ P ′) { (R ∧
R′) ∗(Q ∗Q′) } S. Similarly, we can show (P ∧ P ′) { (R ∧ R′) ∗(Q ∗Q′) } S′,
from which the conclusion follows from Thm. 2.

(P ∧ P ′) ;((R ∧R′) ∗(Q ∗Q′))
|= { (;) and (∗) are monotonic }

P ;(R ∗(Q ∗Q′))
|= { Q′ |= G′ and G′ |= R }

P ;(R ∗(Q ∗R))
|= { associativity and commutativity of (∗) }

P ;(R ∗R ∗Q)
|= { R is invariant, so R ∗R = R by Thm. 4 }

P ;(R ∗Q)
|= { P ;(R ∗Q) |= S by assumption }

S.

6

The Jones rule for sequential composition is:

P R { Q } G S & S R′ { Q′ } G′ S′ ⇒ P (R ∧R′) { Q ;Q′ } (G∇G′) S′.

To prove this, we must show that Q ;Q′ |= G∇G′, which follows from Thm. 5,
and also that P { (R∧R′) ∗(Q ;Q′) } S. But this assertion is invalid. Consider
the following model: P = {∅}, Q = {{q}}, Q′ = {{q′}}, R = R′ = {{r}, ∅},
S = {{r, q}, {q}}, and S′ = {{q, q′}}, with q′ → r → q. One can check that
the antecedents hold in this model, and also that {r, q, q′} satisfies P ;((R ∧
R′) ∗(Q ;Q′)), but not S′. The countermodel is like the example in Fig. 1 in
that there is no direct dependency between q and q′, but interference from the
environment yields an indirect dependency from the second operand to the first.

The Jones rule is of course valid for normal strong sequential composition,
since all the events of the second operand would be forced by control dependency
to be executed after those of the first operand. The anomalous dependency is
then ruled out by acyclicity. But this would sacrifice all opportunity for standard
optimisations. All that is necessary is to ensure that the “critical” events in the
trace of P ;Q are connected by a control dependency. In practice , critical events
are protected by a semaphore; and the definition of the acquisition and release
of semaphores requires that they be linearly ordered by a control arrow.

To prove the weak sequential composition rule, we formalize our assumptions
as follows. We write ← and +→ for the inverse and transitive closure of the →
relation, respectively; ↔ and +↔ for → ∪ ← and +→ ∪ +←. To restrict a relation
to trace tp, we write, e.g., +↔tp. We say an event p ∈ tp is critical to tr when,
for some event r ∈ tr, p↔ r. In established parlance, traces with critical events
are called critical regions. We say tp is protected from tr if every pair of events
p, p′ ∈ tp that are critical to tr are connected: p +↔tp p

′. Finally, P is protected
from R when each tp ∈ P is protected from each tr ∈ R, and P ∗R is acyclic.

Theorem 8. P R { Q } G S & S R′ { Q′ } G′ S′ ⇒
P (R ∧R′) { Q ;Q′ } (G∇G′) S′, when (Q ;Q′) is protected from (R ∧R′).

In Fig. 1, the two events in the trace (tp ; tq) are both critical to tr. To protect
them, it is necessary to connect these critical events by a chain of dependencies.
Then the possibility of a backward dependency is ruled out by acyclicity.

Acknowledgements. The authors thank Josh Berdine, Philippa Gardner, Alek-
sander Nanevski, Viktor Vafeiadis, Glyn Winskel, Hongseok Yang and the mem-
bers of IFIP WG 2.3 for their comments.

References

[1] L. Caires and L. Cardelli. A spatial logic for concurrency (part i). Inf.
Comput., 186(2):194–235, 2003.

[2] C. Calcagno, P. Gardner, and U. Zarfaty. Context logic as modal
logic: completeness and parametric inexpressivity. In M. Hofmann and
M. Felleisen, editors, POPL, pages 123–134. ACM, 2007.

7

[3] C. Calcagno, P. W. O’Hearn, and H. Yang. Local action and abstract
separation logic. In LICS, pages 366–378. IEEE Computer Society, 2007.

[4] L. Cardelli, P. Gardner, and G. Ghelli. A spatial logic for querying graphs.
In P. Widmayer, F. T. Ruiz, R. M. Bueno, M. Hennessy, S. Eidenbenz, and
R. Conejo, editors, ICALP, volume 2380 of LNCS, pages 597–610. Springer,
2002.

[5] C. A. R. Hoare. An axiomatic basis for computer programming. Commun.
ACM, 12(10):576–580, 1969.

[6] C. A. R. Hoare, I. Wehrman, and P. W. O’Hearn. Graphical models of
separation logic. In Engineering Methods and Tools for Software Safety
and Security. Summer School Marktoberdorf, IOS Press, 2009. Online at
http://www.cs.utexas.edu/~iwehrman/pub/marktoberdorf-2008.pdf.

[7] C. B. Jones. Development methods for computer programs including a no-
tion of interference. PhD thesis, Oxford University, 1981.

[8] D. Kozen. On Kleene algebras and closed semirings. In Proceedings, Math.
Found. of Comput. Sci., volume 452 of LNCS, pages 26–47. Springer-Verlag,
1990.

[9] P. W. O’Hearn. Resources, concurrency, and local reasoning. Theor. Com-
put. Sci., 375(1-3):271–307, 2007.

[10] P. W. O’Hearn, J. C. Reynolds, and H. Yang. Local reasoning about pro-
grams that alter data structures. In L. Fribourg, editor, CSL, volume 2142
of LNCS, pages 1–19. Springer, 2001.

[11] V. R. Pratt. The pomset model of parallel processes: Unifying the temporal
and the spatial. In S. D. Brookes, A. W. Roscoe, and G. Winskel, editors,
Seminar on Concurrency, volume 197 of LNCS, pages 180–196. Springer,
1984.

[12] D. J. Pym, P. W. O’Hearn, and H. Yang. Possible worlds and resources:
the semantics of BI. Theor. Comput. Sci., 315(1):257–305, 2004.

[13] D. J. Pym and C. M. N. Tofts. A calculus and logic of resources and
processes. Formal Asp. Comput., 18(4):495–517, 2006.

[14] J. C. Reynolds. Separation logic: A logic for shared mutable data struc-
tures. In LICS, pages 55–74. IEEE Computer Society, 2002.

[15] A. W. Roscoe. The theory and practice of concurrency. Prentice Hall, 1998.

[16] G. Winskel. Event structures. In W. Brauer, W. Reisig, and G. Rozen-
berg, editors, Advances in Petri Nets, volume 255 of LNCS, pages 325–392.
Springer, 1986.

8

