Weak-memory
local reasoning
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Overview

Single-threaded program behavior w.r.t. an idealized
computer model is complex.

Multi-threaded program behavior w.r.t. a realistic
computer model is really complex.



Memory models

Specity interaction between programs and memory.

Description:
Notion of state (an abstract representation of memory);

Explanation of how values are read from/written in a given state.



Memory models

Different programs require different MMs:

Sequential imperative programs w/statically allocated memory:

State 2 Stack where Stack 2 Variable — Value

Sequential (or well-locked concurrent) imperative programs with
dynamically allocated memory:

State £ Stack x Heap where Heap # Address — Value

Racy concurrent imperative programs:

State # ... depends on the architecture.



Racy programs

Not all racy programs are broken:

e.g., lock-free concurrent data structures.



x86 MM

A weak, x86-like memory model:

State ¢ Stack x Heap x WriteBufferArray x Lock

WriteBufferArray 2 Processor -> WriteBuffer
WriteBuffer 2 Queue[Write]
Write £ Address x Value

Lock & Processor+



x86 MM

On processor I:

store enqueues a new write on it" buffer;

load returns value of most recent write in it" buffer;
if none, then value in heap;

fence flushes all writes on it" buffer to the heap;
acquire (lock) or release (unlock) the global lock.

all but store block while jZi holds lock.

Writes may commit nondeterministically!



Hoare logic

Program specifications: = {P}c{Q}
command c is a sequential staticc-memory command,;

precondition P describes an initial set of states;

postcondition Q describes a final set of states.
Meaning;:

if c executes from a P-state, it terminates in a Q-state or diverges.



Separation logic

Extension of Hoare Logic: —{P}c{Q}

enables sound reasoning about dynamic-memory commands;
additional assertions used to describe heap values;

all proved programs are memory-safe.



Concurrent separation logic

An extension of separation logic: J-{P}c{Q}

c is a concurrent dynamic-memory command;
P and Q describe thread-private states;
invariant J describes environment-shared states;

all proved programs are well-locked and race-free.

(Required by simple memory model!)
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Project

Goal: A program logic with an x86-like model.
Why?

Existing logics insufficient or unsound for racy programs.

Eventually wish to prove racy programs correct.

Explore concurrent reasoning in weak vs. strong MMs.
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Project

Result: an x86-like variant of CSL.

Components:
1) a programming language;
2) an assertion logic;

3) a specification logic.
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Project components

(1/3) Programming language:

C-like w/assignment, load, store, fence & locking primitives.

x86-like semantics. 'E
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Project components

(2/3) Assertion logic:
Like the assertion language of SL/CSL, but more expressive.

Describe heaps and write buffers and the global lock.

x86-like semantics.

Ideally also a proof theory, but that’s future work.
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Project components

(3/3) Specification logic:

CSL-like specifications.

CSL-like proof theory, but with x86-specific adjustments.
x86-like semantics. ||
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Project components

Qeciﬁcation proofs
Specification lang @tion semantics

Assertion lang Programming lang

@cation sem@

Machine modeD

[C_erory model
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Agenda

Assertion language and models:

Language extends FOL and SL/CSL language;

New formulas for new state elements.

Design constraints from specification logic:

Expressive enough to describe x86 commands;

Constrained enough for sound, local reasoning.
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Local reasoning

The big idea in SL/CSL:

Restrict reasoning to a small, relevant part of system state;

Then generalize to a complete description of system state.

Embodied by the frame rule:
JE{P}c{Q}

JF{R+«P}c{R=*Q}
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Separation

In SL/CSL:

P « Q is the separating conjunction of assertions P and Q.

Describes heaps that can be partitioned into sub-heaps:

a sub-heap described by P and a sub-heap described by Q.

19



2,0

3,0

Separation

4 )
2,0 3,0 4,0
\§ J
h
ho b S hl

20

4,0




Spatial separation

In x86-CSL:

P « Q is called the spatial separating conjunction of P and Q.

Describes x86 states that are separable by address:

a sub-state described by P and a sub-state described by Q.
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Spatial separation
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Spatial separation
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Spatial separation
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Heap values

In SL/CSL:

The points-to assertion describes a single heap value.
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Heap values

In x86-CSL:

The points-to assertion describes a heap value and empty buffers.
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Buffered writes

In x86-CSL:

The leads-to assertion describes a single buffered write.
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Buffered writes
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Buffered writes

7'\-)02*1*\)03

Inconsistent!

Spatial separating conjunction can’t:

describe writes to the same location;

describe writes in any particular order.
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Temporal separation

P < Q :temporal separating conjunction of P and Q.

Describes ordered sequences of writes to non-disjoint addresses.

Separates x86 states according to time:

writes described by P must occur before writes described by Q.
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Temporal separation
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Temporal separation
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Write sequences
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Temporal locality

Commands are local in space and time.

Consider aload x == [7]:

Assigns to x value of the most recent write to address 7.

Earlier writes are irrelevant.

Temporal frame rule:

J={P}c{Q}

JHF{R<P}c{R«Q}
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Strong temporal separation

P €« Q: strong temporal separating conjunction.

Separates in both time and space;
P4Q = (P*Q)/\(PQQ)
Strong temporal frame rule:

JE{P}c{Q}

JH-{R<«P}c{R«Q}
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Load and store

Load axiom:
Good: JH{e~if} x=[e]i {e~f A x=¢e}

Better: J-{e~if « P} x:=[e]; {(e~if « P) A x=e}

Store axiom:
Good: J{e~je'} [e]=f {e~ie' <e~f}

Better: JI-{e~ie’ < P}l [e]=f {e~e <« P «e~f}
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Conclusion

Contributions:
A programming language with an x86-like model.
An assertion logic with an x86-like model.
A CSL-style logic for local reasoning about x86-like programs.

(Examples indicate reasoning might not be significantly harder than in CSL.)

Lots of work left!

Some important meta-theory remains (e.g., soundness).

Proof theory of specifications must be strengthened.

37



Thank you

Advisors:

Warren Hunt and J Moore.

Committee, etc.:

Josh Berdine, Allen Emerson, Don Fussell, Tony Hoare and
Mohamed Gouda.

Everyone else!
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Barrier assertions

emp : empty state

P+emp = P<demp = P = emp<P

emp = P
bar; : result of flushing it" write buffer
P < bar; : like P but with empty it" buffer

Expresses fence axiom:
J+—{emp} fence; { bar;}

J+={P} fence; {P < bar;}
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Lock assertions

lock; describes states in which processor i holds lock.

1 7] A (lock; = lock;) : inconsistent because lock is exclusive.

| 7] A (lock; = e »; ) : buffered write only because j is blocked by i.
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Lock axioms

Good:
J-{emp} lock; {locki}

J{locki} unlocki {emp}

Better:

J{emp} lock; { lock; = bar;}

J = {lock;} unlock; { bar;}
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Concurrency

Accessing shared state:

emprH{J=x+P=xlocki}c{J Q= lock;}

JH{Pxlocki}c{Q = lock;}

Concurrent composition:

JH{P}c{Q} and J{P'}c'{Q"}

JE{P«P}c|lc’{Q«Q"}

Sharing private state:

JE{P}c{Q}

empr{J+«P}c{J+Q}
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Closure

Assertions denote sets that are closed under flushing:
if 0 =P and o can flush writes to yield o’ then also o’ = P.

Nondeterministic flushing is hidden by the logic;
no explicit reasoning about flushing.

Important for soundness:

J+{P}skipi{P}
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Races and disjunction
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X = [T]ois a racy load; atrue post-conditionis:x=2v x=3
Can we use the disjunction rule to reason about racy loads?

JH{P}c{Q} and J+{P'}c{Q}

JE{PVP}c{Q}

No: the former state, alone, is not closed under flushing!
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