Weak-memory
local reasoning

eeeeeeeeeeeeeeee

Overview

Single-threaded program behavior w.r.t. an idealized
computer model is complex.

Multi-threaded program behavior w.r.t. a realistic
computer model is really complex.

Memory models

Specity interaction between programs and memory.

Description:
Notion of state (an abstract representation of memory);

Explanation of how values are read from/written in a given state.

Memory models

Different programs require different MMs:

Sequential imperative programs w/statically allocated memory:

State 2 Stack where Stack 2 Variable — Value

Sequential (or well-locked concurrent) imperative programs with
dynamically allocated memory:

State £ Stack x Heap where Heap # Address — Value

Racy concurrent imperative programs:

State # ... depends on the architecture.

Racy programs

Not all racy programs are broken:

e.g., lock-free concurrent data structures.

x86 MM

A weak, x86-like memory model:

State ¢ Stack x Heap x WriteBufferArray x Lock

WriteBufferArray 2 Processor -> WriteBuffer
WriteBuffer 2 Queue[Write]
Write £ Address x Value

Lock & Processor+

x86 MM

On processor I:

store enqueues a new write on it" buffer;

load returns value of most recent write in it" buffer;
if none, then value in heap;

fence flushes all writes on it" buffer to the heap;
acquire (lock) or release (unlock) the global lock.

all but store block while jZi holds lock.

Writes may commit nondeterministically!

Hoare logic

Program specifications: = {P}c{Q}
command c is a sequential staticc-memory command,;

precondition P describes an initial set of states;

postcondition Q describes a final set of states.
Meaning;:

if c executes from a P-state, it terminates in a Q-state or diverges.

Separation logic

Extension of Hoare Logic: —{P}c{Q}

enables sound reasoning about dynamic-memory commands;
additional assertions used to describe heap values;

all proved programs are memory-safe.

Concurrent separation logic

An extension of separation logic: J-{P}c{Q}

c is a concurrent dynamic-memory command;
P and Q describe thread-private states;
invariant J describes environment-shared states;

all proved programs are well-locked and race-free.

(Required by simple memory model!)

10

Project

Goal: A program logic with an x86-like model.
Why?

Existing logics insufficient or unsound for racy programs.

Eventually wish to prove racy programs correct.

Explore concurrent reasoning in weak vs. strong MMs.

11

Project

Result: an x86-like variant of CSL.

Components:
1) a programming language;
2) an assertion logic;

3) a specification logic.

12

Project components

(1/3) Programming language:

C-like w/assignment, load, store, fence & locking primitives.

x86-like semantics. 'E

13

Project components

(2/3) Assertion logic:
Like the assertion language of SL/CSL, but more expressive.

Describe heaps and write buffers and the global lock.

x86-like semantics.

Ideally also a proof theory, but that’s future work.

14

Project components

(3/3) Specification logic:

CSL-like specifications.

CSL-like proof theory, but with x86-specific adjustments.
x86-like semantics. ||

15

Project components

Qeciﬁcation proofs
Specification lang @tion semantics

Assertion lang Programming lang

@cation sem@

Machine modeD

[C_erory model

16

Agenda

Assertion language and models:

Language extends FOL and SL/CSL language;

New formulas for new state elements.

Design constraints from specification logic:

Expressive enough to describe x86 commands;

Constrained enough for sound, local reasoning.

17

Local reasoning

The big idea in SL/CSL:

Restrict reasoning to a small, relevant part of system state;

Then generalize to a complete description of system state.

Embodied by the frame rule:
JE{P}c{Q}

JF{R+«P}c{R=*Q}

18

Separation

In SL/CSL:

P « Q is the separating conjunction of assertions P and Q.

Describes heaps that can be partitioned into sub-heaps:

a sub-heap described by P and a sub-heap described by Q.

19

2,0

3,0

Separation

4)
2,0 3,0 4,0
\§ J
h
ho b S hl

20

4,0

Spatial separation

In x86-CSL:

P « Q is called the spatial separating conjunction of P and Q.

Describes x86 states that are separable by address:

a sub-state described by P and a sub-state described by Q.

21

Spatial separation

22

4)
2,2
4,1
b 2,1
- N h 20 | 3,0 | 4,0
_ Y,
> (h,b)
bo 2,1
ho 2,0 3,0 (ho,bo) % (hl,bl)
. Y,

4)
by | 4,1
hy 4,0
\. J

Spatial separation

23

4)
4,1
2,2
b 2,1
- N h 20 | 3,0 | 4,0
_ Y,
> (h,b)
bo 2,1
ho 2,0 3,0 (ho,bo) % (hl,bl)
. Y,

4)
by | 4,1
hy 4,0
\. J

Spatial separation

4 N\
2,3
4,1 2,2
B(0) | 2,1 4,2 | B(1)
e N h 2,0 | 3,0 | 4,0 e N
_ _J
2,3 (h’B)
Bo(0) | 2,1 2,2 | Bo(1) B.(0) | 4,1 42 | By(1)
ho 2,0 | 3,0 (ho,Bo) % (hy,B1) h 4,0
_ _J _ _J

24

Heap values

In SL/CSL:

The points-to assertion describes a single heap value.

-2

7,2

25

Heap values

In x86-CSL:

The points-to assertion describes a heap value and empty buffers.

-2
. N
B(0) B(1)
= Be=|
h 7,2

26

Buffered writes

In x86-CSL:

The leads-to assertion describes a single buffered write.

4)
B(0) 7,2 | B(1)

L =
h

_ J

7"*12

27

. N
B(0) B(1)

= =
h 7,2

\ Y,

Buffered writes

-
8,3
B(0) | 7,2
N
r N
B(0) | 83 B(1)
—1
7,2
h
_ y,

I ~>0 2 %8 ~>0 3

™ 4

7,2

B(1) B(0) | 8,3

I L=

AN

4 ™

B(0) B(1)

... ==
7,2 | 8,3

h
\ y,

28

N
B(1)
e
Y,
~ N
B(0) | 7,2 B(1
(0) — (1)
8,3
h
_ Y,

Buffered writes

7'\-)02*1*\)03

Inconsistent!

Spatial separating conjunction can’t:

describe writes to the same location;

describe writes in any particular order.

29

Temporal separation

P < Q :temporal separating conjunction of P and Q.

Describes ordered sequences of writes to non-disjoint addresses.

Separates x86 states according to time:

writes described by P must occur before writes described by Q.

30

Temporal separation

r N
bo | 4,1
ho 3,1 | 4,0
_ y,

% N
32
b | 41
h 3.1 | 40
N y
(h,b)
(ho,bo) < (h1,b1)

31

4 A
b 3,2
hy
\- J

Temporal separation

4 A
bo | 3,0
ho
\. J

% N
3,1
b | 41
h 30 | 40
N y
(h,b)
(ho,bo) < (h1,b1)

32

4)
3,1
b1 4,1
h; 4,0
\. J

Write sequences

r p
7,3
B(0) | 7,2 B(1)
1
h
- J

[~>92< 1 ~¢3
s N
B(0) | 7,3 B(1)
................... — .
h 7,2
- y,

33

4)
B0 B(1
B =
h 7,3

\. J

Temporal locality

Commands are local in space and time.

Consider aload x == [7]:

Assigns to x value of the most recent write to address 7.

Earlier writes are irrelevant.

Temporal frame rule:

J={P}c{Q}

JHF{R<P}c{R«Q}

34

Strong temporal separation

P €« Q: strong temporal separating conjunction.

Separates in both time and space;
P4Q = (P*Q)/\(PQQ)
Strong temporal frame rule:

JE{P}c{Q}

JH-{R<«P}c{R«Q}

35

Load and store

Load axiom:
Good: JH{e~if} x=[e]i {e~f A x=¢e}

Better: J-{e~if « P} x:=[e]; {(e~if « P) A x=e}

Store axiom:
Good: J{e~je'} [e]=f {e~ie' <e~f}

Better: JI-{e~ie’ < P}l [e]=f {e~e <« P «e~f}

36

Conclusion

Contributions:
A programming language with an x86-like model.
An assertion logic with an x86-like model.
A CSL-style logic for local reasoning about x86-like programs.

(Examples indicate reasoning might not be significantly harder than in CSL.)

Lots of work left!

Some important meta-theory remains (e.g., soundness).

Proof theory of specifications must be strengthened.

37

Thank you

Advisors:

Warren Hunt and J Moore.

Committee, etc.:

Josh Berdine, Allen Emerson, Don Fussell, Tony Hoare and
Mohamed Gouda.

Everyone else!

38

39

Barrier assertions

emp : empty state

P+emp = P<demp = P = emp<P

emp = P
bar; : result of flushing it" write buffer
P < bar; : like P but with empty it" buffer

Expresses fence axiom:
J+—{emp} fence; { bar;}

J+={P} fence; {P < bar;}

40

Lock assertions

lock; describes states in which processor i holds lock.

1 7] A (lock; = lock;) : inconsistent because lock is exclusive.

| 7] A (lock; = e »;) : buffered write only because j is blocked by i.

41

Lock axioms

Good:
J-{emp} lock; {locki}

J{locki} unlocki {emp}

Better:

J{emp} lock; { lock; = bar;}

J = {lock;} unlock; { bar;}

42

Concurrency

Accessing shared state:

emprH{J=x+P=xlocki}c{J Q= lock;}

JH{Pxlocki}c{Q = lock;}

Concurrent composition:

JH{P}c{Q} and J{P'}c'{Q"}

JE{P«P}c|lc’{Q«Q"}

Sharing private state:

JE{P}c{Q}

empr{J+«P}c{J+Q}

43

Closure

Assertions denote sets that are closed under flushing:
if 0 =P and o can flush writes to yield o’ then also o’ = P.

Nondeterministic flushing is hidden by the logic;
no explicit reasoning about flushing.

Important for soundness:

J+{P}skipi{P}

44

Races and disjunction

4 N 4 N
B(0) 7,3 | B(1) B(0) B(1)
B = ooy b = B
h 7,2 h 73

\ J \ J

X = [T]ois a racy load; atrue post-conditionis:x=2v x=3
Can we use the disjunction rule to reason about racy loads?

JH{P}c{Q} and J+{P'}c{Q}

JE{PVP}c{Q}

No: the former state, alone, is not closed under flushing!

45

