Weak-memory local reasoning

Ian Wehrman

September 26, 2012

Overview

Single-threaded program behavior w.r.t. an idealized computer model is complex.

Multi-threaded program behavior w.r.t. a **realistic** computer model is *really* complex.

Memory models

Specify interaction between programs and memory. Description:

- Notion of state (an abstract representation of memory);
- Explanation of how values are read from/written in a given state.

Memory models

Different programs require different MMs:

Sequential imperative programs w/statically allocated memory:

State ≜ Stack where Stack ≜ Variable → Value

Sequential (or well-locked concurrent) imperative programs with dynamically allocated memory:

State ≜ Stack × Heap where Heap ≜ Address → Value

Racy concurrent imperative programs:

State ≜ ... depends on the architecture.

Racy programs

Not all racy programs are broken:

e.g., lock-free concurrent data structures.

x86 MM

A weak, x86-like memory model:

State = Stack × Heap × WriteBufferArray × Lock

WriteBufferArray ≜ Processor → WriteBuffer

WriteBuffer = Queue[Write]

Write Address × Value

Lock \triangleq Processor + \perp

x86 MM

On processor i:

store enqueues a new write on ith buffer;

load returns value of most recent write in ith buffer; if none, then value in heap;

fence flushes all writes on ith buffer to the heap;

acquire (lock) or release (unlock) the global lock.

all but store block while j≠i holds lock.

Writes may commit nondeterministically!

Hoare logic

Program specifications: $\vdash \{P\} \subset \{Q\}$

command **c** is a sequential static-memory command;

precondition P describes an initial set of states;

postcondition **Q** describes a final set of states.

Meaning:

if **c** executes from a **P**-state, it terminates in a **Q**-state or diverges.

Separation logic

Extension of Hoare Logic: $\vdash \{ P \} \subset \{ Q \}$

- enables sound reasoning about dynamic-memory commands;
- additional assertions used to describe heap values;
- all proved programs are memory-safe.

Concurrent separation logic

An extension of separation logic: $J \vdash \{P\} \in \{Q\}$

c is a *concurrent* dynamic-memory command;

P and Q describe thread-private states;

invariant J describes environment-shared states;

all proved programs are well-locked and race-free.

(Required by simple memory model!)

Project

Goal: A program logic with an x86-like model.

Why?

Existing logics insufficient or unsound for racy programs.

Eventually wish to prove racy programs correct.

Explore concurrent reasoning in weak vs. strong MMs.

Project

Result: an x86-like variant of CSL.

Components:

- 1) a programming language;
- 2) an assertion logic;
- 3) a specification logic.

(1/3) Programming language:

C-like w/assignment, load, store, fence & locking primitives.

x86-like semantics.

(2/3) Assertion logic:

Like the assertion language of SL/CSL, but more expressive.

Describe heaps **and** write buffers **and** the global lock.

x86-like semantics. SNEW!

Ideally also a proof theory, but that's future work.

(3/3) Specification logic:

CSL-like specifications.

CSL-like proof theory, but with x86-specific adjustments.

NEW!

x86-like semantics.

Agenda

Assertion language and models:

Language extends FOL and SL/CSL language;

New formulas for new state elements.

Design constraints from specification logic:

Expressive enough to describe x86 commands;

Constrained enough for sound, local reasoning.

Local reasoning

The **big idea** in SL/CSL:

Restrict reasoning to a small, relevant part of system state;

Then generalize to a complete description of system state.

Embodied by the **frame rule**:

 $\mathsf{J} \vdash \set{\mathsf{P}}{\mathsf{c}}{\mathsf{Q}}$

 $\mathsf{J} \vdash \{\,\mathsf{R} \,\ast\,\mathsf{P}\,\}\,\mathsf{c}\,\{\,\mathsf{R} \,\ast\,\mathsf{Q}\,\}$

Separation

In SL/CSL:

P * **Q** is the **separating conjunction** of assertions **P** and **Q**.

Describes heaps that can be partitioned into sub-heaps:

a sub-heap described by P and a sub-heap described by Q.

Separation

*

 h_0

 h_1

4,0	

In x86-CSL:

P * **Q** is called the **spatial separating conjunction** of **P** and **Q**.

Describes x86 states that are separable by address:

a sub-state described by P and a sub-state described by Q.

Heap values

In SL/CSL:

The **points-to assertion** describes a **single heap value**.

Heap values

In x86-CSL:

The points-to assertion describes a heap value and **empty buffers**.

7 → 2

Buffered writes

In x86-CSL:

The leads-to assertion describes a single buffered write.

 $7 \rightarrow_1 2$

Buffered writes

 $7 \rightarrow_0 2 * 8 \rightarrow_0 3$

Buffered writes

 $7 \rightarrow_0 2 * \underline{7} \rightarrow_0 3$

Inconsistent!

Spatial separating conjunction can't:

describe writes to the same location;

describe writes in any particular order.

Temporal separation

P ⊲ **Q** : temporal separating conjunction of **P** and **Q**.

Describes *ordered* sequences of writes to *non-disjoint* addresses.

Separates x86 states according to time:

writes described by P must *occur before* writes described by Q.

Temporal separation

Temporal separation

Write sequences

$$7 \rightarrow_0 2 \triangleleft 7 \rightarrow_0 3$$

Temporal locality

Commands are local in space **and time**.

Consider a load x = [7]:

Assigns to x value of the *most recent* write to address 7.

Earlier writes are irrelevant.

Temporal frame rule:

 $\mathsf{J} \vdash \set{\mathsf{P}}{\mathsf{C}}{\mathsf{Q}}$

 $\mathsf{J} \vdash \{ \mathsf{R} \triangleleft \mathsf{P} \} \mathsf{c} \{ \mathsf{R} \triangleleft \mathsf{Q} \}$

Strong temporal separation

P ◀ Q : strong temporal separating conjunction.

Separates in both time and space;

 $\mathsf{P} \blacktriangleleft \mathsf{Q} \triangleq (\mathsf{P} \ast \mathsf{Q}) \land (\mathsf{P} \triangleleft \mathsf{Q})$

Strong temporal frame rule:

 $\mathsf{J} \vdash \{\,\mathsf{P}\,\}\,\mathsf{c}\,\{\,\mathsf{Q}\,\}$

 $\mathsf{J} \vdash \{\mathsf{R} \triangleleft \mathsf{P}\} \mathsf{c} \{\mathsf{R} \triangleleft \mathsf{Q}\}$

Load and store

Load axiom:

Good: $J \vdash \{ e \rightarrow_i f \} x \coloneqq [e]_i \{ e \rightarrow_i f \land x = e \}$

Better: $J \vdash \{ e \rightarrow_i f \triangleleft P \} x \coloneqq [e]_i \{ (e \rightarrow_i f \triangleleft P) \land x = e \}$

Store axiom:

Good: $J \vdash \{ e \rightarrow_i e' \} [e] \coloneqq f_i \{ e \rightarrow_i e' \triangleleft e \rightarrow_i f \}$

Better: $J \vdash \{ e \rightarrow_i e' \triangleleft P \} [e] \coloneqq f_i \{ e \rightarrow_i e' \triangleleft P \triangleleft e \rightarrow_i f \}$

Conclusion

Contributions:

- A programming language with an x86-like model.
- An assertion logic with an x86-like model.
- A CSL-style logic for local reasoning about x86-like programs.
 - (Examples indicate reasoning might not be significantly harder than in CSL.)

Lots of work left!

- Some important meta-theory remains (e.g., soundness).
- Proof theory of specifications *must* be strengthened.

Thank you

Advisors:

Warren Hunt and J Moore.

Committee, etc.:

Josh Berdine, Allen Emerson, Don Fussell, Tony Hoare and Mohamed Gouda.

Everyone else!

Barrier assertions

emp : empty state

 $P * emp = P \triangleleft emp = P = emp \triangleleft P = emp * P$

bar_i : result of flushing ith write buffer

P ⊲ **bar**_i : like P but with empty ith buffer

Expresses fence axiom:

 $J \vdash \{emp\} fence_i \{bar_i\}$

 $\mathsf{J} \vdash \{\mathsf{P}\} \text{ fence}_i \{\mathsf{P} \triangleleft \mathbf{bar}_i\}$

Lock assertions

lock_i describes states in which processor i holds lock.

 $i \neq j \land (lock_i * lock_j)$: inconsistent because lock is exclusive.

 $i \neq j \land (lock_i * e \rightarrow_j f)$: buffered write *only* because j is blocked by i.

Lock axioms

Good:

 $J \vdash \{emp\} lock_i \{lock_i\}$

 $\mathsf{J} \vdash \{\textit{lock}_i\} \textit{ unlock}_i \{\textit{emp}\}$

Better:

 $J \vdash \{emp\} lock_i \{lock_i * bar_i\}$

 $J \vdash \{ lock_i \} unlock_i \{ bar_i \}$

Concurrency

Accessing shared state:

 $emp \vdash \{ J * P * lock_i \} c \{ J * Q * lock_i \}$

 $J \vdash \{ P * lock_i \} c \{ Q * lock_i \}$

Concurrent composition:

 $J \vdash \{P\} c \{Q\}$ and $J \vdash \{P'\} c' \{Q'\}$

 $\mathsf{J} \vdash \{\mathsf{P} \ast \mathsf{P'}\} \mathsf{c} \| \mathsf{c'} \{\mathsf{Q} \ast \mathsf{Q'}\}$

Sharing private state:

 $\mathsf{J} \vdash \{\mathsf{P}\} \mathsf{c} \{\mathsf{Q}\}$

 $emp \vdash \{ \, J \, * \, P \, \} \, c \, \{ \, J \, * \, Q \, \}$

Closure

Assertions denote sets that are closed under flushing:

if $\sigma \models P$ and σ can flush writes to yield σ' then also $\sigma' \models P$.

Nondeterministic flushing is hidden by the logic; no explicit reasoning about flushing.

Important for soundness:

 $J \vdash \{P\} skip_i \{P\}$

Races and disjunction

 $x = [7]_0$ is a racy load; a true post-condition is: $x = 2 \lor x = 3$

Can we use the disjunction rule to reason about racy loads?

$$J \vdash \{P\} c \{Q\} \text{ and } J \vdash \{P'\} c \{Q\}$$
$$J \vdash \{P \lor P'\} c \{Q\}$$

No: the former state, alone, is not closed under flushing!