
Weak-memory
local reasoning

Ian Wehrman
September 26, 2012

Overview

Single-threaded program behavior w.r.t. an idealized
computer model is complex.

Multi-threaded program behavior w.r.t. a realistic
computer model is really complex.

2

Memory models

Specify interaction between programs and memory.

Description:

Notion of state (an abstract representation of memory);

Explanation of how values are read from/written in a given state.

3

Memory models

Different programs require different MMs:

Sequential imperative programs w/statically allocated memory:

State ≜ Stack where Stack ≜ Variable ⇀ Value

Sequential (or well-locked concurrent) imperative programs with
dynamically allocated memory:

State ≜ Stack × Heap where Heap ≜ Address ⇀ Value

Racy concurrent imperative programs:

State ≜ ... depends on the architecture.

4

Racy programs

Not all racy programs are broken:

e.g., lock-free concurrent data structures.

5

x86 MM

A weak, x86-like memory model:

State ≜ Stack × Heap × WriteBufferArray × Lock

WriteBufferArray ≜ Processor → WriteBuffer

WriteBuffer ≜ Queue[Write]

Write ≜ Address × Value

Lock ≜ Processor + ⊥

6

x86 MM
On processor i:

store enqueues a new write on ith buffer;

load returns value of most recent write in ith buffer;
if none, then value in heap;

fence flushes all writes on ith buffer to the heap;

acquire (lock) or release (unlock) the global lock.

all but store block while j≠i holds lock.

Writes may commit nondeterministically!

7

Hoare logic

 Program specifications: ⊢ { P } c { Q }

command c is a sequential static-memory command;

precondition P describes an initial set of states;

postcondition Q describes a final set of states.

Meaning:

if c executes from a P-state, it terminates in a Q-state or diverges.

8

Separation logic

Extension of Hoare Logic: ⊢ { P } c { Q }

enables sound reasoning about dynamic-memory commands;

additional assertions used to describe heap values;

all proved programs are memory-safe.

9

Concurrent separation logic

An extension of separation logic: J ⊢ { P } c { Q }

c is a concurrent dynamic-memory command;

P and Q describe thread-private states;

invariant J describes environment-shared states;

all proved programs are well-locked and race-free.

(Required by simple memory model!)

10

Project

Goal: A program logic with an x86-like model.

Why?

Existing logics insufficient or unsound for racy programs.

Eventually wish to prove racy programs correct.

Explore concurrent reasoning in weak vs. strong MMs.

11

Project

Result: an x86-like variant of CSL.

Components:

1) a programming language;

2) an assertion logic;

3) a specification logic.

12

Project components

(1/3) Programming language:

C-like w/assignment, load, store, fence & locking primitives.

x86-like semantics.

13

NEW!

Project components

(2/3) Assertion logic:

Like the assertion language of SL/CSL, but more expressive.

Describe heaps and write buffers and the global lock.

x86-like semantics.

Ideally also a proof theory, but that’s future work.

14

NEW!

NEW!

Project components

(3/3) Specification logic:

CSL-like specifications.

CSL-like proof theory, but with x86-specific adjustments.

x86-like semantics.

15

NEW!

NEW!

Project components

16

Agenda

Assertion language and models:

Language extends FOL and SL/CSL language;

New formulas for new state elements.

Design constraints from specification logic:

Expressive enough to describe x86 commands;

Constrained enough for sound, local reasoning.

17

Local reasoning

The big idea in SL/CSL:

Restrict reasoning to a small, relevant part of system state;

Then generalize to a complete description of system state.

Embodied by the frame rule:

18

J ⊢ { P } c { Q }

J ⊢ { R ∗ P } c { R ∗ Q }

Separation

In SL/CSL:

P ∗ Q is the separating conjunction of assertions P and Q.

Describes heaps that can be partitioned into sub-heaps:

a sub-heap described by P and a sub-heap described by Q.

19

20

3,0 4,02,0

h

2,0 3,0 h0 4,0h1

Separation

∗

Spatial separation

In x86-CSL:

P ∗ Q is called the spatial separating conjunction of P and Q.

Describes x86 states that are separable by address:

a sub-state described by P and a sub-state described by Q.

21

22

2,0 3,0

2,1

2,2

h0

b0

(h0,b0) 4,0

4,1

h1

b1

(h1,b1)

3,0 4,02,0

2,1

4,1

2,2

h

b

(h,b)

Spatial separation

∗

23

2,0 3,0

2,1

2,2

h0

b0

4,0

4,1

h1

b1

3,0 4,02,0

2,1

2,2

4,1

h

b

(h,b)

Spatial separation

(h0,b0) (h1,b1)∗

24

2,0 3,0

2,1

2,3

2,2

h0

B0(0) B0(1)

4,0

4,1 4,2

h1

B1(0) B1(1)

3,0 4,02,0

2,1

4,1

2,3

4,2

2,2

h

B(0) B(1)

(h,B)

Spatial separation

(h0,B0) (h1,B1)∗

Heap values

In SL/CSL:

The points-to assertion describes a single heap value.

7 � 2

25

7,2

Heap values

In x86-CSL:

The points-to assertion describes a heap value and empty buffers.

7 � 2

26

7,2h

B(0) B(1)

Buffered writes

In x86-CSL:

The leads-to assertion describes a single buffered write.

7 �1 2

27

7,2

h

B(0) B(1)

h

B(0) B(1)

7,2

Buffered writes
7 �0 2 ∗ 8 �0 3

28

h

B(0) B(1)

7,2 8,3

h

B(0) B(1)7,2

8,3

h

B(0) B(1)8,3

7,2

h

B(0) B(1)

7,2

8,3

h

B(0) B(1)

8,3

7,2

Buffered writes
7 �0 2 ∗ 7 �0 3

Inconsistent!

Spatial separating conjunction can’t:

describe writes to the same location;

describe writes in any particular order.

29

Temporal separation

P ◁ Q : temporal separating conjunction of P and Q.

Describes ordered sequences of writes to non-disjoint addresses.

Separates x86 states according to time:

writes described by P must occur before writes described by Q.

30

31

3,1 4,0h0

b0

(h0,b0)

3,24,1

h1

b1

(h1,b1)

(h,b)

4,03,1

4,1

3,2

h

b

Temporal separation

◁

32

h0

b0 4,1

h1

b1

4,03,0

4,1

3,1

h

b

(h,b)

Temporal separation

3,0

4,0

3,1

(h0,b0) (h1,b1)◁

Write sequences

7 �0 2 ◁ 7 �0 3

33

h

B(0) B(1)7,2

7,3

h

B(0) B(1)

7,2

7,3

h

B(0) B(1)

7,3

Temporal locality

Commands are local in space and time.

Consider a load x ≔ [7]:

Assigns to x value of the most recent write to address 7.

Earlier writes are irrelevant.

Temporal frame rule:

34

J ⊢ { P } c { Q }

J ⊢ { R ◁ P } c { R ◁ Q }

Strong temporal separation

P ◀ Q : strong temporal separating conjunction.

Separates in both time and space;

P ◀ Q ≜ (P ∗ Q) ∧ (P ◁ Q)

Strong temporal frame rule:

35

J ⊢ { P } c { Q }

J ⊢ { R ◀ P } c { R ◀ Q }

Load and store

Load axiom:

Good: J ⊢ { e �i f } x ≔ [e]i { e �i f ∧ x = e }

Better: J ⊢ { e �i f ◀ P } x ≔ [e]i { (e �i f ◀ P) ∧ x = e }

Store axiom:

Good: J ⊢ { e �i eʹ } [e] ≔ fi { e �i eʹ ◁ e �i f }

Better: J ⊢ { e �i eʹ ◁ P } [e] ≔ fi { e �i eʹ ◁ P ◁ e �i f }

36

Conclusion
Contributions:

A programming language with an x86-like model.

An assertion logic with an x86-like model.

A CSL-style logic for local reasoning about x86-like programs.

(Examples indicate reasoning might not be significantly harder than in CSL.)

Lots of work le$!

Some important meta-theory remains (e.g., soundness).

Proof theory of specifications must be strengthened.

37

Thank you

Advisors:

Warren Hunt and J Moore.

Committee, etc.:

Josh Berdine, Allen Emerson, Don Fussell, Tony Hoare and
Mohamed Gouda.

Everyone else!

38

39

Barrier assertions

emp : empty state

P ∗ emp ≡ P ◁ emp ≡ P ≡ emp ◁ P ≡ emp ∗ P

bari : result of flushing ith write buffer

P ◁ bari : like P but with empty ith buffer

Expresses fence axiom:

J ⊢ { emp } fencei { bari }

J ⊢ { P } fencei { P ◁ bari }

40

Lock assertions

locki describes states in which processor i holds lock.

i ≠ j ∧ (locki ∗ lockj) : inconsistent because lock is exclusive.

i ≠ j ∧ (locki ∗ e �j f) : buffered write only because j is blocked by i.

41

Lock axioms

Good:

J ⊢ { emp } locki { locki}

J ⊢ { locki } unlocki { emp }

Better:

J ⊢ { emp } locki { locki ∗ bari }

J ⊢ { locki } unlocki { bari }

42

Accessing shared state:

Concurrent composition:

Sharing private state:

Concurrency

43

emp ⊢ { J ∗ P ∗ locki } c { J ∗ Q ∗ locki }

J ⊢ { P ∗ locki } c { Q ∗ locki }

J ⊢ { P } c { Q } and J ⊢ { Pʹ } cʹ { Qʹ }

J ⊢ { P ∗ Pʹ } c‖cʹ { Q ∗ Qʹ }

J ⊢ { P } c { Q }

emp ⊢ { J ∗ P } c { J ∗ Q }

Closure

Assertions denote sets that are closed under flushing:

if σ ⊨ P and σ can flush writes to yield σʹ then also σʹ ⊨ P.

Nondeterministic flushing is hidden by the logic;
no explicit reasoning about flushing.

Important for soundness:

J ⊢ { P } skipi { P }

44

Races and disjunction

x ≔ [7]0 is a racy load; a true post-condition is: x = 2 ∨ x = 3

Can we use the disjunction rule to reason about racy loads?

No: the former state, alone, is not closed under flushing!

45

h

B(0) B(1)

7,2

7,3

h

B(0) B(1)

7,3

J ⊢ { P } c { Q } and J ⊢ { Pʹ } c { Q }

J ⊢ { P ∨ Pʹ } c { Q }

